

Welcome to devlib documentation

devlib provides an interface for interacting with remote targets, such as
development boards, mobile devices, etc. It also provides means of collecting
various measurements and traces from such targets.

Contents:

	Overview
	Acquiring a Target

	Target Interface

	Super User Privileges

	On-Target Locations

	Exceptions Handling

	Modules

	Instruments and Collectors

	Target
	Linux Target

	Local Linux Target

	Android Target

	ChromeOS Target

	Modules
	hotplug

	cpufreq

	cpuidle

	cgroups

	hwmon

	API

	Instrumentation
	Example

	API

	Available Instruments

	Collectors
	Example

	API

	Available Collectors

	Derived Measurements
	Example

	API

	Available Derived Measurements

	Platform
	Versatile Express

	Gem5 Simulation Platform

	Connection
	Connection Types

Indices and tables

	Index

	Module Index

	Search Page

Overview

A Target instance serves as the main interface to the target device.
There are currently four target interfaces:

	LinuxTarget for interacting with Linux devices over SSH.

	AndroidTarget for interacting with Android devices over adb.

	ChromeOsTarget: for interacting with ChromeOS devices
over SSH, and their Android containers over adb.

	LocalLinuxTarget: for interacting with the local Linux host.

They all work in more-or-less the same way, with the major difference being in
how connection settings are specified; though there may also be a few APIs
specific to a particular target type (e.g. AndroidTarget
exposes methods for working with logcat).

Acquiring a Target

To create an interface to your device, you just need to instantiate one of the
Target derivatives listed above, and pass it the right
connection_settings. Code snippet below gives a typical example of
instantiating each of the three target types.

from devlib import LocalLinuxTarget, LinuxTarget, AndroidTarget

Local machine requires no special connection settings.
t1 = LocalLinuxTarget()

For a Linux device, you will need to provide the normal SSH credentials.
Both password-based, and key-based authentication is supported (password
authentication requires sshpass to be installed on your host machine).'
t2 = LinuxTarget(connection_settings={'host': '192.168.0.5',
 'username': 'root',
 'password': 'sekrit',
 # or
 'keyfile': '/home/me/.ssh/id_rsa'})
ChromeOsTarget connection is performed in the same way as LinuxTarget

For an Android target, you will need to pass the device name as reported
by "adb devices". If there is only one device visible to adb, you can omit
this setting and instantiate similar to a local target.
t3 = AndroidTarget(connection_settings={'device': '0123456789abcde'})

Instantiating a target may take a second or two as the remote device will be
queried to initialize Target’s internal state. If you
would like to create a Target instance but not
immediately connect to the remote device, you can pass connect=False
parameter. If you do that, you would have to then explicitly call
t.connect() before you can interact with the device.

There are a few additional parameters you can pass in instantiation besides
connection_settings, but they are usually unnecessary. Please see
Target API documentation for more details.

Target Interface

This is a quick overview of the basic interface to the device. See
Target API documentation for the full list of supported
methods and more detailed documentation.

One-time Setup

from devlib import LocalLinuxTarget
t = LocalLinuxTarget()

t.setup()

This sets up the target for devlib interaction. This includes creating
working directories, deploying busybox, etc. It’s usually enough to do this once
for a new device, as the changes this makes will persist across reboots.
However, there is no issue with calling this multiple times, so, to be on the
safe side, it’s a good idea to call this once at the beginning of your scripts.

Command Execution

There are several ways to execute a command on the target. In each case, an
instance of a subclass of TargetError will be raised if something goes
wrong. When a transient error is encountered such as the loss of the network
connectivity, it will raise a TargetTransientError. When the command
fails, it will raise a TargetStableError unless the
will_succeed=True parameter is specified, in which case a
TargetTransientError will be raised since it is assumed that the
command cannot fail unless there is an environment issue. In each case, it is
also possible to specify as_root=True if the specified command should be
executed as root.

from devlib import LocalLinuxTarget
t = LocalLinuxTarget()

Execute a command
output = t.execute('echo $PWD')

Execute command via a subprocess and return the corresponding Popen object.
This will block current connection to the device until the command
completes.
p = t.background('echo $PWD')
output, error = p.communicate()

Run the command in the background on the device and return immediately.
This will not block the connection, allowing to immediately execute another
command.
t.kick_off('echo $PWD')

This is used to invoke an executable binary on the device. This allows some
finer-grained control over the invocation, such as specifying the directory
in which the executable will run; however you're limited to a single binary
and cannot construct complex commands (e.g. this does not allow chaining or
piping several commands together).
output = t.invoke('echo', args=['$PWD'], in_directory='/')

File Transfer

from devlib import LocalLinuxTarget
t = LocalLinuxTarget()

"push" a file from the local machine onto the target device.
t.push('/path/to/local/file.txt', '/path/to/target/file.txt')

"pull" a file from the target device into a location on the local machine
t.pull('/path/to/target/file.txt', '/path/to/local/file.txt')

Install the specified binary on the target. This will deploy the file and
ensure it's executable. This will *not* guarantee that the binary will be
in PATH. Instead the path to the binary will be returned; this should be
used to call the binary henceforth.
target_bin = t.install('/path/to/local/bin.exe')
Example invocation:
output = t.execute('{} --some-option'.format(target_bin))

The usual access permission constraints on the user account (both on the target
and the host) apply.

Process Control

import signal
from devlib import LocalLinuxTarget
t = LocalLinuxTarget()

return PIDs of all running instances of a process
pids = t.get_pids_of('sshd')

kill a running process. This works the same ways as the kill command, so
SIGTERM will be used by default.
t.kill(666, signal=signal.SIGKILL)

kill all running instances of a process.
t.killall('badexe', signal=signal.SIGKILL)

List processes running on the target. This returns a list of parsed
PsEntry records.
entries = t.ps()
e.g. print virtual memory sizes of all running sshd processes:
print(', '.join(str(e.vsize) for e in entries if e.name == 'sshd'))

More…

As mentioned previously, the above is not intended to be exhaustive
documentation of the Target interface. Please refer to
the API documentation for the full list of attributes and methods and their
parameters.

Super User Privileges

It is not necessary for the account logged in on the target to have super user
privileges, however the functionality will obviously be diminished, if that is
not the case. devlib will determine if the logged in user has root
privileges and the correct way to invoke it. You should avoid including “sudo”
directly in your commands, instead, specify as_root=True where needed. This
will make your scripts portable across multiple devices and OS’s.

On-Target Locations

File system layouts vary wildly between devices and operating systems.
Hard-coding absolute paths in your scripts will mean there is a good chance they
will break if run on a different device. To help with this, devlib defines
a couple of “standard” locations and a means of working with them.

	working_directory
	This is a directory on the target readable and writable by the account
used to log in. This should generally be used for all output generated
by your script on the device and as the destination for all
host-to-target file transfers. It may or may not permit execution so
executables should not be run directly from here.

	executables_directory
	This directory allows execution. This will be used by install().

from devlib import LocalLinuxTarget
t = LocalLinuxTarget()

t.path is equivalent to Python standard library's os.path, and should be
used in the same way. This insures that your scripts are portable across
both target and host OS variations. e.g.
on_target_path = t.path.join(t.working_directory, 'assets.tar.gz')
t.push('/local/path/to/assets.tar.gz', on_target_path)

Since working_directory is a common base path for on-target locations,
there a short-hand for the above:
t.push('/local/path/to/assets.tar.gz', t.get_workpath('assets.tar.gz'))

Exceptions Handling

Devlib custom exceptions all derive from DevlibError. Some exceptions
are further categorized into DevlibTransientError and
DevlibStableError. Transient errors are raised when there is an issue
in the environment that can happen randomly such as the loss of network
connectivity. Even a properly configured environment can be subject to such
transient errors. Stable errors are related to either programming errors or
configuration issues in the broad sense. This distinction allows quicker
analysis of failures, since most transient errors can be ignored unless they
happen at an alarming rate. DevlibTransientError usually propagates up
to the caller of devlib APIs, since it means that an operation could not
complete. Retrying it or bailing out is therefore a responsability of the caller.

The hierarchy is as follows:

	DevlibError

	WorkerThreadError

	HostError

	TargetError

	TargetStableError

	TargetTransientError

	TargetNotRespondingError

	DevlibStableError

	TargetStableError

	DevlibTransientError

	TimeoutError

	TargetTransientError

	TargetNotRespondingError

Extending devlib

New devlib code is likely to face the decision of raising a transient or stable
error. When it is unclear which one should be used, it can generally be assumed
that the system is properly configured and therefore, the error is linked to an
environment transient failure. If a function is somehow probing a property of a
system in the broad meaning, it can use a stable error as a way to signal a
non-expected value of that property even if it can also face transient errors.
An example are the various execute() methods where the command can generally
not be assumed to be supposed to succeed by devlib. Their failure does not
usually come from an environment random issue, but for example a permission
error. The user can use such expected failure to probe the system. Another
example is boot completion detection on Android: boot failure cannot be
distinguished from a timeout which is too small. A non-transient exception is
still raised, since assuming the timeout comes from a network failure would
either make the function useless, or force the calling code to handle a
transient exception under normal operation. The calling code would potentially
wrongly catch transient exceptions raised by other functions as well and attach
a wrong meaning to them.

Modules

Additional functionality is exposed via modules. Modules are initialized as
attributes of a target instance. By default, hotplug, cpufreq,
cpuidle, cgroups and hwmon will attempt to load on target; additional
modules may be specified when creating a Target instance.

A module will probe the target for support before attempting to load. So if the
underlying platform does not support particular functionality (e.g. the kernel
on target device was built without hotplug support). To check whether a module
has been successfully installed on a target, you can use has() method, e.g.

from devlib import LocalLinuxTarget
t = LocalLinuxTarget()

cpu0_freqs = []
if t.has('cpufreq'):
 cpu0_freqs = t.cpufreq.list_frequencies(0)

Please see the modules documentation for more detail.

Instruments and Collectors

You can retrieve multiple types of data from a target. There are two categories
of classes that allow for this:

	An Instrument which may be used to collect measurements (such as power) from
targets that support it. Please see the
instruments documentation for more details.

	A Collector may be used to collect arbitary data from a Target varying
from screenshots to trace data. Please see the
collectors documentation for more details.

An example workflow using FTraceCollector is as follows:

from devlib import AndroidTarget, FtraceCollector
t = LocalLinuxTarget()

Initialize a collector specifying the events you want to collect and
the buffer size to be used.
trace = FtraceCollector(t, events=['power*'], buffer_size=40000)

As a context manager, clear ftrace buffer using trace.reset(),
start trace collection using trace.start(), then stop it Using
trace.stop(). Using a context manager brings the guarantee that
tracing will stop even if an exception occurs, including
KeyboardInterrupt (ctr-C) and SystemExit (sys.exit)
with trace:
 # Perform the operations you want to trace here...
 import time; time.sleep(5)

extract the trace file from the target into a local file
trace.get_data('/tmp/trace.bin')

View trace file using Kernelshark (must be installed on the host).
trace.view('/tmp/trace.bin')

Convert binary trace into text format. This would normally be done
automatically during get_data(), unless autoreport is set to False during
instantiation of the trace collector.
trace.report('/tmp/trace.bin', '/tmp/trace.txt')

Target

	
class devlib.target.Target(connection_settings=None, platform=None, working_directory=None, executables_directory=None, connect=True, modules=None, load_default_modules=True, shell_prompt=DEFAULT_SHELL_PROMPT, conn_cls=None)

	Target is the primary interface to the remote
device. All interactions with the device are performed via a
Target instance, either directly, or via its
modules or a wrapper interface (such as an
Instrument).

	Parameters

	
	connection_settings – A dict that specifies how to connect to the
remote device. Its contents depend on the specific
Target type (used see
Connection Types).

	platform – A Target defines interactions at
Operating System level. A Platform describes
the underlying hardware (such as CPUs available). If a
Platform instance is not specified on
Target creation, one will be created
automatically and it will dynamically probe the device to discover
as much about the underlying hardware as it can. See also
Platform.

	working_directory – This is primary location for on-target file system
interactions performed by devlib. This location must be readable
and writable directly (i.e. without sudo) by the connection’s user
account. It may or may not allow execution. This location will be
created, if necessary, during setup().

If not explicitly specified, this will be set to a default value
depending on the type of Target

	executables_directory – This is the location to which devlib will
install executable binaries (either during setup() or via an
explicit install() call). This location must support execution
(obviously). It should also be possible to write to this location,
possibly with elevated privileges (i.e. on a rooted Linux target, it
should be possible to write here with sudo, but not necessarily directly
by the connection’s account). This location will be created, if
necessary, during setup().

This location does not need to be same as the system’s executables
location. In fact, to prevent devlib from overwriting system’s defaults,
it better if this is a separate location, if possible.

If not explicitly specified, this will be set to a default value
depending on the type of Target

	connect – Specifies whether a connections should be established to the
target. If this is set to False, then connect() must be
explicitly called later on before the Target
instance can be used.

	modules – a list of additional modules to be installed. Some modules
will try to install by default (if supported by the underlying target).
Current default modules are hotplug, cpufreq, cpuidle,
cgroups, and hwmon (See Modules).

See modules documentation for more detail.

	load_default_modules – If set to False, default modules listed
above will not attempt to load. This may be used to either speed up
target instantiation (probing for initializing modules takes a bit of
time) or if there is an issue with one of the modules on a particular
device (the rest of the modules will then have to be explicitly
specified in the modules).

	shell_prompt – This is a regular expression that matches the shell
prompted on the target. This may be used by some modules that establish
auxiliary connections to a target over UART.

	conn_cls – This is the type of connection that will be used to
communicate with the device.

	
Target.core_names

	This is a list containing names of CPU cores on the target, in the order in
which they are index by the kernel. This is obtained via the underlying
Platform.

	
Target.core_clusters

	Some devices feature heterogeneous core configurations (such as ARM
big.LITTLE). This is a list that maps CPUs onto underlying clusters.
(Usually, but not always, clusters correspond to groups of CPUs with the same
name). This is obtained via the underlying Platform.

	
Target.big_core

	This is the name of the cores that are the “big”s in an ARM big.LITTLE
configuration. This is obtained via the underlying Platform.

	
Target.little_core

	This is the name of the cores that are the “little”s in an ARM big.LITTLE
configuration. This is obtained via the underlying Platform.

	
Target.is_connected

	A boolean value that indicates whether an active connection exists to the
target device.

	
Target.connected_as_root

	A boolean value that indicate whether the account that was used to connect to
the target device is “root” (uid=0).

	
Target.is_rooted

	A boolean value that indicates whether the connected user has super user
privileges on the devices (either is root, or is a sudoer).

	
Target.kernel_version

	The version of the kernel on the target device. This returns a
KernelVersion instance that has separate version and release
fields.

	
Target.os_version

	This is a dict that contains a mapping of OS version elements to their
values. This mapping is OS-specific.

	
Target.hostname

	A string containing the hostname of the target.

	
Target.hostid

	A numerical id used to represent the identity of the target.

Note

Currently on 64-bit PowerPC devices this id will always be 0. This is
due to the included busybox binary being linked with musl.

	
Target.system_id

	A unique identifier for the system running on the target. This identifier is
intended to be unique for the combination of hardware, kernel, and file
system.

	
Target.model

	The model name/number of the target device.

	
Target.cpuinfo

	This is a Cpuinfo instance which contains parsed contents of
/proc/cpuinfo.

	
Target.number_of_cpus

	The total number of CPU cores on the target device.

	
Target.config

	A KernelConfig instance that contains parsed kernel config from the
target device. This may be None if kernel config could not be extracted.

	
Target.user

	The name of the user logged in on the target device.

	
Target.conn

	The underlying connection object. This will be None if an active
connection does not exist (e.g. if connect=False as passed on
initialization and connect() has not been called).

Note

a Target will automatically create a
connection per thread. This will always be set to the connection
for the current thread.

	
Target.connect([timeout])

	Establish a connection to the target. It is usually not necessary to call
this explicitly, as a connection gets automatically established on
instantiation.

	
Target.disconnect()

	Disconnect from target, closing all active connections to it.

	
Target.get_connection([timeout])

	Get an additional connection to the target. A connection can be used to
execute one blocking command at time. This will return a connection that can
be used to interact with a target in parallel while a blocking operation is
being executed.

This should not be used to establish an initial connection; use
connect() instead.

Note

Target will automatically create a connection
per thread, so you don’t normally need to use this explicitly in
threaded code. This is generally useful if you want to perform a
blocking operation (e.g. using background()) while at the same
time doing something else in the same host-side thread.

	
Target.setup([executables])

	This will perform an initial one-time set up of a device for devlib
interaction. This involves deployment of tools relied on the
Target, creation of working locations on the device,
etc.

Usually, it is enough to call this method once per new device, as its effects
will persist across reboots. However, it is safe to call this method multiple
times. It may therefore be a good practice to always call it once at the
beginning of a script to ensure that subsequent interactions will succeed.

Optionally, this may also be used to deploy additional tools to the device
by specifying a list of binaries to install in the executables parameter.

	
Target.reboot([hard[, connect[, timeout]]])

	Reboot the target device.

	Parameters

	
	hard – A boolean value. If True a hard reset will be used instead
of the usual soft reset. Hard reset must be supported (usually via a
module) for this to work. Defaults to False.

	connect – A boolean value. If True, a connection will be
automatically established to the target after reboot. Defaults to
True.

	timeout – If set, this will be used by various (platform-specific)
operations during reboot process to detect if the reboot has failed and
the device has hung.

	
Target.push(source, dest[, as_root, timeout, globbing])

	Transfer a file from the host machine to the target device.

If transfer polling is supported (ADB connections and SSH connections),
poll_transfers is set in the connection, and a timeout is not specified,
the push will be polled for activity. Inactive transfers will be
cancelled. (See Connection Types for more information on polling).

	Parameters

	
	source – path on the host

	dest – path on the target

	as_root – whether root is required. Defaults to false.

	timeout – timeout (in seconds) for the transfer; if the transfer does
not complete within this period, an exception will be raised. Leave unset
to utilise transfer polling if enabled.

	globbing – If True, the source is interpreted as a globbing
pattern instead of being take as-is. If the pattern has multiple
matches, dest must be a folder (or will be created as such if it
does not exists yet).

	
Target.pull(source, dest[, as_root, timeout, globbing, via_temp])

	Transfer a file from the target device to the host machine.

If transfer polling is supported (ADB connections and SSH connections),
poll_transfers is set in the connection, and a timeout is not specified,
the pull will be polled for activity. Inactive transfers will be
cancelled. (See Connection Types for more information on polling).

	Parameters

	
	source – path on the target

	dest – path on the host

	as_root – whether root is required. Defaults to false.

	timeout – timeout (in seconds) for the transfer; if the transfer does
not complete within this period, an exception will be raised.

	globbing – If True, the source is interpreted as a globbing
pattern instead of being take as-is. If the pattern has multiple
matches, dest must be a folder (or will be created as such if it
does not exists yet).

	via_temp – If True, copy the file first to a temporary location on
the target, and then pull it. This can avoid issues some filesystems,
notably paramiko + OpenSSH combination having performance issues when
pulling big files from sysfs.

	
Target.execute(command[, timeout[, check_exit_code[, as_root[, strip_colors[, will_succeed[, force_locale]]]]]])

	Execute the specified command on the target device and return its output.

	Parameters

	
	command – The command to be executed.

	timeout – Timeout (in seconds) for the execution of the command. If
specified, an exception will be raised if execution does not complete
with the specified period.

	check_exit_code – If True (the default) the exit code (on target)
from execution of the command will be checked, and an exception will be
raised if it is not 0.

	as_root – The command will be executed as root. This will fail on
unrooted targets.

	strip_colours – The command output will have colour encodings and
most ANSI escape sequences striped out before returning.

	will_succeed – The command is assumed to always succeed, unless there is
an issue in the environment like the loss of network connectivity. That
will make the method always raise an instance of a subclass of
DevlibTransientError when the command fails, instead of a
DevlibStableError.

	force_locale – Prepend LC_ALL=<force_locale> in front of the
command to get predictable output that can be more safely parsed.
If None, no locale is prepended.

	
Target.background(command [, stdout [, stderr [, as_root, [, force_locale [, timeout]]])

	Execute the command on the target, invoking it via subprocess on the host.
This will return subprocess.Popen instance for the command.

	Parameters

	
	command – The command to be executed.

	stdout – By default, standard output will be piped from the subprocess;
this may be used to redirect it to an alternative file handle.

	stderr – By default, standard error will be piped from the subprocess;
this may be used to redirect it to an alternative file handle.

	as_root – The command will be executed as root. This will fail on
unrooted targets.

	force_locale – Prepend LC_ALL=<force_locale> in front of the
command to get predictable output that can be more safely parsed.
If None, no locale is prepended.

	timeout – Timeout (in seconds) for the execution of the command. When
the timeout expires, BackgroundCommand.cancel() is executed to
terminate the command.

Note

This will block the connection until the command completes.

	
Target.invoke(binary[, args[, in_directory[, on_cpus[, as_root[, timeout]]]]])

	Execute the specified binary on target (must already be installed) under the
specified conditions and return the output.

	Parameters

	
	binary – binary to execute. Must be present and executable on the device.

	args – arguments to be passed to the binary. The can be either a list or
a string.

	in_directory – execute the binary in the specified directory. This must
be an absolute path.

	on_cpus – taskset the binary to these CPUs. This may be a single
int (in which case, it will be interpreted as the mask), a list of
ints, in which case this will be interpreted as the list of cpus,
or string, which will be interpreted as a comma-separated list of cpu
ranges, e.g. "0,4-7".

	as_root – Specify whether the command should be run as root

	timeout – If this is specified and invocation does not terminate within this number
of seconds, an exception will be raised.

	
Target.background_invoke(binary[, args[, in_directory[, on_cpus[, as_root]]]])

	Execute the specified binary on target (must already be installed) as a
background task, under the specified conditions and return the
subprocess.Popen instance for the command.

	Parameters

	
	binary – binary to execute. Must be present and executable on the device.

	args – arguments to be passed to the binary. The can be either a list or
a string.

	in_directory – execute the binary in the specified directory. This must
be an absolute path.

	on_cpus – taskset the binary to these CPUs. This may be a single
int (in which case, it will be interpreted as the mask), a list of
ints, in which case this will be interpreted as the list of cpus,
or string, which will be interpreted as a comma-separated list of cpu
ranges, e.g. "0,4-7".

	as_root – Specify whether the command should be run as root

	
Target.kick_off(command[, as_root])

	Kick off the specified command on the target and return immediately. Unlike
background() this will not block the connection; on the other hand, there
is not way to know when the command finishes (apart from calling ps())
or to get its output (unless its redirected into a file that can be pulled
later as part of the command).

	Parameters

	
	command – The command to be executed.

	as_root – The command will be executed as root. This will fail on
unrooted targets.

	
Target.read_value(path[, kind])

	Read the value from the specified path. This is primarily intended for
sysfs/procfs/debugfs etc.

	Parameters

	
	path – file to read

	kind – Optionally, read value will be converted into the specified
kind (which should be a callable that takes exactly one parameter).

	
Target.read_int(self, path)

	Equivalent to Target.read_value(path, kind=devlib.utils.types.integer)

	
Target.read_bool(self, path)

	Equivalent to Target.read_value(path, kind=devlib.utils.types.boolean)

	
Target.write_value(path, value[, verify])

	Write the value to the specified path on the target. This is primarily
intended for sysfs/procfs/debugfs etc.

	Parameters

	
	path – file to write into

	value – value to be written

	verify – If True (the default) the value will be read back after
it is written to make sure it has been written successfully. This due to
some sysfs entries silently failing to set the written value without
returning an error code.

	
Target.revertable_write_value(path, value[, verify])

	Same as Target.write_value(), but as a context manager that will write
back the previous value on exit.

	
Target.batch_revertable_write_value(kwargs_list)

	Calls Target.revertable_write_value() with all the keyword arguments
dictionary given in the list. This is a convenience method to update
multiple files at once, leaving them in their original state on exit. If one
write fails, all the already-performed writes will be reverted as well.

	
Target.read_tree_values(path, depth=1, dictcls=dict[, tar[, decode_unicode[, strip_null_char]]])

	Read values of all sysfs (or similar) file nodes under path, traversing
up to the maximum depth depth.

Returns a nested structure of dict-like objects (dicts by default) that
follows the structure of the scanned sub-directory tree. The top-level entry
has a single item who’s key is path. If path points to a single file,
the value of the entry is the value ready from that file node. Otherwise, the
value is a dict-line object with a key for every entry under path
mapping onto its value or further dict-like objects as appropriate.

Although the default behaviour should suit most users, it is possible to
encounter issues when reading binary files, or files with colons in their
name for example. In such cases, the tar parameter can be set to force a
full archive of the tree using tar, hence providing a more robust behaviour.
This can, however, slow down the read process significantly.

	Parameters

	
	path – sysfs path to scan

	depth – maximum depth to descend

	dictcls – a dict-like type to be used for each level of the hierarchy.

	tar – the files will be read using tar rather than grep

	decode_unicode – decode the content of tar-ed files as utf-8

	strip_null_char – remove null chars from utf-8 decoded files

	
Target.read_tree_values_flat(path, depth=1)

	Read values of all sysfs (or similar) file nodes under path, traversing
up to the maximum depth depth.

Returns a dict mapping paths of file nodes to corresponding values.

	Parameters

	
	path – sysfs path to scan

	depth – maximum depth to descend

	
Target.reset()

	Soft reset the target. Typically, this means executing reboot on the
target.

	
Target.check_responsive()

	Returns True if the target appears to be responsive and False
otherwise.

	
Target.kill(pid[, signal[, as_root]])

	Kill a process on the target.

	Parameters

	
	pid – PID of the process to be killed.

	signal – Signal to be used to kill the process. Defaults to
signal.SIGTERM.

	as_root – If set to True, kill will be issued as root. This will
fail on unrooted targets.

	
Target.killall(name[, signal[, as_root]])

	Kill all processes with the specified name on the target. Other parameters
are the same as for kill().

	
Target.get_pids_of(name)

	Return a list of PIDs of all running instances of the specified process.

	
Target.ps()

	Return a list of PsEntry instances for all running processes on the
system.

	
Target.makedirs(self, path)

	Create a directory at the given path and all its ancestors if needed.

	
Target.file_exists(self, filepath)

	Returns True if the specified path exists on the target and False
otherwise.

	
Target.list_file_systems()

	Lists file systems mounted on the target. Returns a list of
FstabEntrys.

	
Target.list_directory(path[, as_root])

	List (optionally, as root) the contents of the specified directory. Returns a
list of strings.

	
Target.get_workpath(self, path)

	Convert the specified path to an absolute path relative to
working_directory on the target. This is a shortcut for
t.path.join(t.working_directory, path)

	
Target.tempfile([prefix[, suffix]])

	Get a path to a temporary file (optionally, with the specified prefix and/or
suffix) on the target.

	
Target.remove(path[, as_root])

	Delete the specified path on the target. Will work on files and directories.

	
Target.core_cpus(core)

	Return a list of numeric cpu IDs corresponding to the specified core name.

	
Target.list_online_cpus([core])

	Return a list of numeric cpu IDs for all online CPUs (optionally, only for
CPUs corresponding to the specified core).

	
Target.list_offline_cpus([core])

	Return a list of numeric cpu IDs for all offline CPUs (optionally, only for
CPUs corresponding to the specified core).

	
Target.getenv(variable)

	Return the value of the specified environment variable on the device

	
Target.capture_screen(filepath)

	Take a screenshot on the device and save it to the specified file on the
host. This may not be supported by the target. You can optionally insert a
{ts} tag into the file name, in which case it will be substituted with
on-target timestamp of the screen shot in ISO8601 format.

	
Target.install(filepath[, timeout[, with_name]])

	Install an executable on the device.

	Parameters

	
	filepath – path to the executable on the host

	timeout – Optional timeout (in seconds) for the installation

	with_name – This may be used to rename the executable on the target

	
Target.install_if_needed(host_path, search_system_binaries=True)

	Check to see if the binary is already installed on the device and if not,
install it.

	Parameters

	
	host_path – path to the executable on the host

	search_system_binaries – Specify whether to search the devices PATH
when checking to see if the executable is installed, otherwise only check
user installed binaries.

	
Target.uninstall(name)

	Uninstall the specified executable from the target

	
Target.get_installed(name)

	Return the full installation path on the target for the specified executable,
or None if the executable is not installed.

	
Target.which(name)

	Alias for get_installed()

	
Target.is_installed(name)

	Returns True if an executable with the specified name is installed on the
target and False other wise.

	
Target.extract(path, dest=None)

	Extracts the specified archive/file and returns the path to the extracted
contents. The extraction method is determined based on the file extension.
zip, tar, gzip, and bzip2 are supported.

	Parameters

	dest –
	Specified an on-target destination directory (which must exist)
	for the extracted contents.

Returns the path to the extracted contents. In case of files (gzip and
bzip2), the path to the decompressed file is returned; for archives, the
path to the directory with the archive’s contents is returned.

	
Target.is_network_connected()

	Checks for internet connectivity on the device. This doesn’t actually
guarantee that the internet connection is “working” (which is rather
nebulous), it’s intended just for failing early when definitively _not_
connected to the internet.

	Returns

	True if internet seems available, False otherwise.

	
Target.install_module(mod, **params)

	
	Parameters

	
	mod – The module name or object to be installed to the target.

	params – Keyword arguments used to instantiate the module.

Installs an additional module to the target after the initial setup has been
performed.

Linux Target

	
class devlib.target.LinuxTarget(connection_settings=None, platform=None, working_directory=None, executables_directory=None, connect=True, modules=None, load_default_modules=True, shell_prompt=DEFAULT_SHELL_PROMPT, conn_cls=SshConnection, is_container=False)

	LinuxTarget is a subclass of Target
with customisations specific to a device running linux.

Local Linux Target

	
class devlib.target.LocalLinuxTarget(connection_settings=None, platform=None, working_directory=None, executables_directory=None, connect=True, modules=None, load_default_modules=True, shell_prompt=DEFAULT_SHELL_PROMPT, conn_cls=SshConnection, is_container=False)

	LocalLinuxTarget is a subclass of
LinuxTarget with customisations specific to using
the host machine running linux as the target.

Android Target

	
class devlib.target.AndroidTarget(connection_settings=None, platform=None, working_directory=None, executables_directory=None, connect=True, modules=None, load_default_modules=True, shell_prompt=DEFAULT_SHELL_PROMPT, conn_cls=AdbConnection, package_data_directory='/data/data')

	AndroidTarget is a subclass of Target with
additional features specific to a device running Android.

	Parameters

	package_data_directory – This is the location of the data stored for
installed Android packages on the device.

	
AndroidTarget.set_rotation(rotation)

	Specify an integer representing the desired screen rotation with the
following mappings: Natural: 0, Rotated Left: 1, Inverted : 2
and Rotated Right : 3.

	
AndroidTarget.get_rotation(rotation)

	Returns an integer value representing the orientation of the devices
screen. 0 : Natural, 1 : Rotated Left, 2 : Inverted
and 3 : Rotated Right.

	
AndroidTarget.set_natural_rotation()

	Sets the screen orientation of the device to its natural (0 degrees)
orientation.

	
AndroidTarget.set_left_rotation()

	Sets the screen orientation of the device to 90 degrees.

	
AndroidTarget.set_inverted_rotation()

	Sets the screen orientation of the device to its inverted (180 degrees)
orientation.

	
AndroidTarget.set_right_rotation()

	Sets the screen orientation of the device to 270 degrees.

	
AndroidTarget.set_auto_rotation(autorotate)

	Specify a boolean value for whether the devices auto-rotation should
be enabled.

	
AndroidTarget.get_auto_rotation()

	Returns True if the targets auto rotation is currently enabled and
False otherwise.

	
AndroidTarget.set_airplane_mode(mode)

	Specify a boolean value for whether the device should be in airplane mode.

Note

Requires the device to be rooted if the device is running Android 7+.

	
AndroidTarget.get_airplane_mode()

	Returns True if the target is currently in airplane mode and
False otherwise.

	
AndroidTarget.set_brightness(value)

	Sets the devices screen brightness to a specified integer between 0 and
255.

	
AndroidTarget.get_brightness()

	Returns an integer between 0 and 255 representing the devices
current screen brightness.

	
AndroidTarget.set_auto_brightness(auto_brightness)

	Specify a boolean value for whether the devices auto brightness
should be enabled.

	
AndroidTarget.get_auto_brightness()

	Returns True if the targets auto brightness is currently
enabled and False otherwise.

	
AndroidTarget.set_stay_on_never()

	Sets the stay-on mode to 0, where the screen will turn off
as standard after the timeout.

	
AndroidTarget.set_stay_on_while_powered()

	Sets the stay-on mode to 7, where the screen will stay on
while the device is charging

	
AndroidTarget.set_stay_on_mode(mode)

	Sets the stay-on mode to the specified number between 0 and
7 (inclusive).

	
AndroidTarget.get_stay_on_mode()

	Returns an integer between 0 and 7 representing the current
stay-on mode of the device.

	
AndroidTarget.ensure_screen_is_off(verify=True)

	Checks if the devices screen is on and if so turns it off.
If verify is set to True then a TargetStableError
will be raise if the display cannot be turned off. E.g. if
always on mode is enabled.

	
AndroidTarget.ensure_screen_is_on(verify=True)

	Checks if the devices screen is off and if so turns it on.
If verify is set to True then a TargetStableError
will be raise if the display cannot be turned on.

	
AndroidTarget.ensure_screen_is_on_and_stays(verify=True, mode=7)

	Calls AndroidTarget.ensure_screen_is_on(verify) then additionally
sets the screen stay on mode to mode.

	
AndroidTarget.is_screen_on()

	Returns True if the targets screen is currently on and False
otherwise. If the display is in a “Doze” mode or similar always on state,
this will return True.

	
AndroidTarget.wait_for_device(timeout=30)

	Returns when the devices becomes available withing the given timeout
otherwise returns a TimeoutError.

	
AndroidTarget.reboot_bootloader(timeout=30)

	Attempts to reboot the target into it’s bootloader.

	
AndroidTarget.homescreen()

	Returns the device to its home screen.

	
AndroidTarget.swipe_to_unlock(direction='diagonal')

	Performs a swipe input on the device to try and unlock the device.
A direction of "horizontal", "vertical" or "diagonal"
can be supplied to specify in which direction the swipe should be
performed. By default "diagonal" will be used to try and
support the majority of newer devices.

ChromeOS Target

	
class devlib.target.ChromeOsTarget(connection_settings=None, platform=None, working_directory=None, executables_directory=None, android_working_directory=None, android_executables_directory=None, connect=True, modules=None, load_default_modules=True, shell_prompt=DEFAULT_SHELL_PROMPT, package_data_directory='/data/data')

	ChromeOsTarget is a subclass of LinuxTarget with
additional features specific to a device running ChromeOS for example,
if supported, its own android container which can be accessed via the
android_container attribute. When making calls to or accessing
properties and attributes of the ChromeOS target, by default they will
be applied to Linux target as this is where the majority of device
configuration will be performed and if not available, will fall back to
using the android container if available. This means that all the
available methods from
LinuxTarget and AndroidTarget are available for
ChromeOsTarget if the device supports android otherwise only the
LinuxTarget methods will be available.

	Parameters

	
	working_directory – This is the location of the working directory to
be used for the Linux target container. If not specified will default to
"/mnt/stateful_partition/devlib-target".

	android_working_directory – This is the location of the working
directory to be used for the android container. If not specified it will
use the working directory default for AndroidTarget..

	android_executables_directory – This is the location of the
executables directory to be used for the android container. If not
specified will default to a bin subdirectory in the
android_working_directory.

	package_data_directory – This is the location of the data stored
for installed Android packages on the device.

Modules

Modules add additional functionality to the core Target
interface. Usually, it is support for specific subsystems on the target. Modules
are instantiated as attributes of the Target instance.

hotplug

Kernel hotplug subsystem allows offlining (“removing”) cores from the
system, and onlining them back in. The devlib module exposes a simple
interface to this subsystem

from devlib import LocalLinuxTarget
target = LocalLinuxTarget()

offline cpus 2 and 3, "removing" them from the system
target.hotplug.offline(2, 3)

bring CPU 2 back in
target.hotplug.online(2)

Make sure all cpus are online
target.hotplug.online_all()

cpufreq

cpufreq is the kernel subsystem for managing DVFS (Dynamic Voltage and
Frequency Scaling). It allows controlling frequency ranges and switching
policies (governors). The devlib module exposes the following interface

Note

On ARM big.LITTLE systems, all cores on a cluster (usually all cores
of the same type) are in the same frequency domain, so setting
cpufreq state on one core on a cluster will affect all cores on
that cluster. Because of this, some devices only expose cpufreq sysfs
interface (which is what is used by the devlib module) on the
first cpu in a cluster. So to keep your scripts portable, always use
the fist (online) CPU in a cluster to set cpufreq state.

	
target.cpufreq.list_governors(cpu)

	List cpufreq governors available for the specified cpu. Returns a list of
strings.

	Parameters

	cpu – The cpu; could be a numeric or the corresponding string (e.g.
1 or "cpu1").

	
target.cpufreq.list_governor_tunables(cpu)

	List the tunables for the specified cpu’s current governor.

	Parameters

	cpu – The cpu; could be a numeric or the corresponding string (e.g.
1 or "cpu1").

	
target.cpufreq.get_governor(cpu)

	Returns the name of the currently set governor for the specified cpu.

	Parameters

	cpu – The cpu; could be a numeric or the corresponding string (e.g.
1 or "cpu1").

	
target.cpufreq.set_governor(cpu, governor, **kwargs)

	Sets the governor for the specified cpu.

	Parameters

	
	cpu – The cpu; could be a numeric or the corresponding string (e.g.
1 or "cpu1").

	governor – The name of the governor. This must be one of the governors
supported by the CPU (as returned by list_governors().

Keyword arguments may be used to specify governor tunable values.

	
target.cpufreq.get_governor_tunables(cpu)

	Return a dict with the values of the specified CPU’s current governor.

	Parameters

	cpu – The cpu; could be a numeric or the corresponding string (e.g.
1 or "cpu1").

	
target.cpufreq.set_governor_tunables(cpu, **kwargs)

	Set the tunables for the current governor on the specified CPU.

	Parameters

	cpu – The cpu; could be a numeric or the corresponding string (e.g.
1 or "cpu1").

Keyword arguments should be used to specify tunable values.

	
target.cpufreq.list_frequencies(cpu)

	List DVFS frequencies supported by the specified CPU. Returns a list of ints.

	Parameters

	cpu – The cpu; could be a numeric or the corresponding string (e.g.
1 or "cpu1").

	
target.cpufreq.get_min_frequency(cpu)

	
target.cpufreq.get_max_frequency(cpu)

	
target.cpufreq.set_min_frequency(cpu, frequency[, exact=True])

	
target.cpufreq.set_max_frequency(cpu, frequency[, exact=True])

	Get the currently set, or set new min and max frequencies for the specified
CPU. “set” functions are available with all governors other than
userspace.

	Parameters

	cpu – The cpu; could be a numeric or the corresponding string (e.g.
1 or "cpu1").

	
target.cpufreq.get_min_available_frequency(cpu)

	
target.cpufreq.get_max_available_frequency(cpu)

	
Retrieve the min or max DVFS frequency that is supported (as opposed to
currently enforced) for a given CPU. Returns an int or None if could not be
determined.

	Parameters

	frequency – Frequency to set.

	
target.cpufreq.get_frequency(cpu)

	
target.cpufreq.set_frequency(cpu, frequency[, exact=True])

	Get and set current frequency on the specified CPU. set_frequency is only
available if the current governor is userspace.

	Parameters

	
	cpu – The cpu; could be a numeric or the corresponding string (e.g.
1 or "cpu1").

	frequency – Frequency to set.

cpuidle

cpuidle is the kernel subsystem for managing CPU low power (idle) states.

	
target.cpuidle.get_driver()

	Return the name current cpuidle driver.

	
target.cpuidle.get_governor()

	Return the name current cpuidle governor (policy).

	
target.cpuidle.get_states([cpu=0])

	Return idle states (optionally, for the specified CPU). Returns a list of
CpuidleState instances.

	
target.cpuidle.get_state(state[, cpu=0])

	Return CpuidleState instance (optionally, for the specified CPU)
representing the specified idle state. state can be either an integer
index of the state or a string with the states name or desc.

	
target.cpuidle.enable(state[, cpu=0])

	
target.cpuidle.disable(state[, cpu=0])

	
target.cpuidle.enable_all([cpu=0])

	
target.cpuidle.disable_all([cpu=0])

	Enable or disable the specified or all states (optionally on the specified
CPU.

You can also call enable() or disable() on CpuidleState objects
returned by get_state(s).

cgroups

TODO

hwmon

TODO

API

Generic Module API Description

Modules implement discrete, optional pieces of functionality (“optional” in the
sense that the functionality may or may not be present on the target device, or
that it may or may not be necessary for a particular application).

Every module (ultimately) derives from devlib.module.Module class. A
module must define the following class attributes:

	name

	A unique name for the module. This cannot clash with any of the existing
names and must be a valid Python identifier, but is otherwise free-form.

	kind

	This identifies the type of functionality a module implements, which in
turn determines the interface implemented by the module (all modules of
the same kind must expose a consistent interface). This must be a valid
Python identifier, but is otherwise free-form, though, where possible,
one should try to stick to an already-defined kind/interface, lest we end
up with a bunch of modules implementing similar functionality but
exposing slightly different interfaces.

Note

It is possible to omit kind when defining a module, in
which case the module’s name will be treated as its
kind as well.

	stage

	This defines when the module will be installed into a
Target. Currently, the following values are
allowed:

	connected

	The module is installed after a connection to the target has
been established. This is the default.

	early

	The module will be installed when a
Target is first created. This should be
used for modules that do not rely on a live connection to the
target.

	setup

	The module will be installed after initial setup of the device
has been performed. This allows the module to utilize assets
deployed during the setup stage for example ‘Busybox’.

Additionally, a module must implement a static (or class) method probe():

	
Module.probe(target)

	This method takes a Target instance and returns
True if this module is supported by that target, or False otherwise.

Note

If the module stage is "early", this method cannot assume
that a connection has been established (i.e. it can only access
attributes of the Target that do not rely on a connection).

Installation and invocation

The default installation method will create an instance of a module (the
Target instance being the sole argument) and assign it
to the target instance attribute named after the module’s kind (or
name if kind is None).

It is possible to change the installation procedure for a module by overriding
the default install() method. The method must have the following
signature:

	
Module.install(cls, target, **kwargs)

	Install the module into the target instance.

Implementation and Usage Patterns

There are two common ways to implement the above API, corresponding to the two
common uses for modules:

	If a module provides an interface to a particular set of functionality (e.g.
an OS subsystem), that module would typically derive directly form
Module and would leave kind unassigned, so that it is accessed
by it name. Its instance’s methods and attributes provide the interface for
interacting with its functionality. For examples of this type of module, see
the subsystem modules listed above (e.g. cpufreq).

	If a module provides a platform- or infrastructure-specific implementation of
a common function, the module would derive from one of Module
subclasses that define the interface for that function. In that case the
module would be accessible via the common kind defined its super. The
module would typically implement __call__() and be invoked directly. For
examples of this type of module, see common function interface definitions
below.

Common Function Interfaces

This section documents Module classes defining interface for common
functions. Classes derived from them provide concrete implementations for
specific platforms.

HardResetModule

	
HardResetModule.kind

	“hard_reset”

	
HardResetModule.__call__()

	Must be implemented by derived classes.

Implements hard reset for a target devices. The equivalent of physically
power cycling the device. This may be used by client code in situations
where the target becomes unresponsive and/or a regular reboot is not
possible.

BootModule

	
BootModule.kind

	“hard_reset”

	
BootModule.__call__()

	Must be implemented by derived classes.

Implements a boot procedure. This takes the device from (hard or soft)
reset to a booted state where the device is ready to accept connections. For
a lot of commercial devices the process is entirely automatic, however some
devices (e.g. development boards), my require additional steps, such as
interactions with the bootloader, in order to boot into the OS.

	
Bootmodule.update(**kwargs)

	Update the boot settings. Some boot sequences allow specifying settings
that will be utilized during boot (e.g. linux kernel boot command line). The
default implementation will set each setting in kwargs as an attribute of
the boot module (or update the existing attribute).

FlashModule

	
FlashModule.kind

	“flash”

	
devlib.module.hwmon.__call__(image_bundle=None, images=None, boot_config=None, connect=True)

	Must be implemented by derived classes.

Flash the target platform with the specified images.

	Parameters

	
	image_bundle – A compressed bundle of image files with any associated
metadata. The format of the bundle is specific to a
particular implementation.

	images – A dict mapping image names/identifiers to the path on the
host file system of the corresponding image file. If both
this and image_bundle are specified, individual images
will override those in the bundle.

	boot_config – Some platforms require specifying boot arguments at the
time of flashing the images, rather than during each
reboot. For other platforms, this will be ignored.

	Connect

	Specifiy whether to try and connect to the target after flashing.

Module Registration

Modules are specified on Target or
Platform creation by name. In order to find the class
associated with the name, the module needs to be registered with devlib.
This is accomplished by passing the module class into register_module()
method once it is defined.

Note

If you’re wiring a module to be included as part of devlib code
base, you can place the file with the module class under
devlib/modules/ in the source and it will be automatically
enumerated. There is no need to explicitly register it in that case.

The code snippet below illustrates an implementation of a hard reset function
for an “Acme” device.

import os
from devlib import HardResetModule, register_module

class AcmeHardReset(HardResetModule):

 name = 'acme_hard_reset'

 def __call__(self):
 # Assuming Acme board comes with a "reset-acme-board" utility
 os.system('reset-acme-board {}'.format(self.target.name))

register_module(AcmeHardReset)

Instrumentation

The Instrument API provide a consistent way of collecting measurements from
a target. Measurements are collected via an instance of a class derived from
Instrument. An Instrument allows collection of
measurement from one or more channels. An Instrument may support
INSTANTANEOUS or CONTINUOUS collection, or both.

Example

The following example shows how to use an instrument to read temperature from an
Android target.

import and instantiate the Target and the instrument
(note: this assumes exactly one android target connected
to the host machine).
In [1]: from devlib import AndroidTarget, HwmonInstrument

In [2]: t = AndroidTarget()

In [3]: i = HwmonInstrument(t)

Set up the instrument on the Target. In case of HWMON, this is
a no-op, but is included here for completeness.
In [4]: i.setup()

Find out what the instrument is capable collecting from the
target.
In [5]: i.list_channels()
Out[5]:
[CHAN(battery/temp1, battery_temperature),
 CHAN(exynos-therm/temp1, exynos-therm_temperature)]

Set up a new measurement session, and specify what is to be
collected.
In [6]: i.reset(sites=['exynos-therm'])

HWMON instrument supports INSTANTANEOUS collection, so invoking
take_measurement() will return a list of measurements take from
each of the channels configured during reset()
In [7]: i.take_measurement()
Out[7]: [exynos-therm_temperature: 36.0 degrees]

API

Instrument

	
class devlib.instrument.Instrument(target, **kwargs)

	An Instrument allows collection of measurement from one or more
channels. An Instrument may support INSTANTANEOUS or CONTINUOUS
collection, or both.

	
Instrument.mode

	A bit mask that indicates collection modes that are supported by this
instrument. Possible values are:

	INSTANTANEOUS

	The instrument supports taking a single sample via
take_measurement().

	CONTINUOUS

	The instrument supports collecting measurements over a
period of time via start(), stop(), get_data(),
and (optionally) get_raw methods.

Note

It’s possible for one instrument to support more than a single
mode.

	
Instrument.active_channels

	Channels that have been activated via reset(). Measurements will only be
collected for these channels.

	
Instrument.list_channels()

	Returns a list of InstrumentChannel instances that describe what
this instrument can measure on the current target. A channel is a combination
of a kind of measurement (power, temperature, etc) and a site that
indicates where on the target the measurement will be collected from.

	
Instrument.get_channels(measure)

	Returns channels for a particular measure type. A measure can be
either a string (e.g. "power") or a MeasurmentType instance.

	
Instrument.setup(*args, **kwargs)

	This will set up the instrument on the target. Parameters this method takes
are particular to subclasses (see documentation for specific instruments
below). What actions are performed by this method are also
instrument-specific. Usually these will be things like installing
executables, starting services, deploying assets, etc. Typically, this method
needs to be invoked at most once per reboot of the target (unless
teardown() has been called), but see documentation for the instrument
you’re interested in.

	
Instrument.reset(sites=None, kinds=None, channels=None)

	This is used to configure an instrument for collection. This must be invoked
before start() is called to begin collection. This methods sets the
active_channels attribute of the Instrument.

If channels is provided, it is a list of names of channels to enable and
sites and kinds must both be None.

Otherwise, if one of sites or kinds is provided, all channels
matching the given sites or kinds are enabled. If both are provided then all
channels of the given kinds at the given sites are enabled.

If none of sites, kinds or channels are provided then all
available channels are enabled.

	
Instrument.take_measurement()

	Take a single measurement from active_channels. Returns a list of
Measurement objects (one for each active channel).

Note

This method is only implemented by
Instruments that
support INSTANTANEOUS measurement.

	
Instrument.start()

	Starts collecting measurements from active_channels.

Note

This method is only implemented by
Instruments that
support CONTINUOUS measurement.

	
Instrument.stop()

	Stops collecting measurements from active_channels. Must be called after
start().

Note

This method is only implemented by
Instruments that
support CONTINUOUS measurement.

	
Instrument.get_data(outfile)

	Write collected data into outfile. Must be called after stop().
Data will be written in CSV format with a column for each channel and a row
for each sample. Column heading will be channel, labels in the form
<site>_<kind> (see InstrumentChannel). The order of the columns
will be the same as the order of channels in Instrument.active_channels.

If reporting timestamps, one channel must have a site named
"timestamp" and a kind of a MeasurmentType of an appropriate
time unit which will be used, if appropriate, during any post processing.

Note

Currently supported time units are seconds, milliseconds and
microseconds, other units can also be used if an appropriate
conversion is provided.

This returns a MeasurementCsv instance associated with the outfile
that can be used to stream Measurements lists (similar to what is
returned by take_measurement().

Note

This method is only implemented by
Instruments that
support CONTINUOUS measurement.

	
Instrument.get_raw()

	
Returns a list of paths to files containing raw output from the underlying
source(s) that is used to produce the data CSV. If no raw output is
generated or saved, an empty list will be returned. The format of the
contents of the raw files is entirely source-dependent.

Note

This method is not guaranteed to return valid filepaths after the
teardown() method has been invoked as the raw files may have
been deleted. Please ensure that copies are created manually
prior to calling teardown() if the files are to be retained.

	
Instrument.teardown()

	Performs any required clean up of the instrument. This usually includes
removing temporary and raw files (if keep_raw is set to False on relevant
instruments), stopping services etc.

	
Instrument.sample_rate_hz

	Sample rate of the instrument in Hz. Assumed to be the same for all channels.

Note

This attribute is only provided by
Instruments that
support CONTINUOUS measurement.

Instrument Channel

	
class devlib.instrument.InstrumentChannel(name, site, measurement_type, **attrs)

	An InstrumentChannel describes a single type of measurement that may
be collected by an Instrument. A channel is
primarily defined by a site and a measurement_type.

A site indicates where on the target a measurement is collected from
(e.g. a voltage rail or location of a sensor).

A measurement_type is an instance of MeasurmentType that
describes what sort of measurement this is (power, temperature, etc). Each
measurement type has a standard unit it is reported in, regardless of an
instrument used to collect it.

A channel (i.e. site/measurement_type combination) is unique per instrument,
however there may be more than one channel associated with one site (e.g. for
both voltage and power).

It should not be assumed that any site/measurement_type combination is valid.
The list of available channels can queried with
Instrument.list_channels().

	
InstrumentChannel.site

	The name of the “site” from which the measurements are collected (e.g. voltage
rail, sensor, etc).

	
InstrumentChannel.kind

	A string indicating the type of measurement that will be collected. This is
the name of the MeasurmentType associated with this channel.

	
InstrumentChannel.units

	Units in which measurement will be reported. this is determined by the
underlying MeasurmentType.

	
InstrumentChannel.label

	A label that can be attached to measurements associated with with channel.
This is constructed with

'{}_{}'.format(self.site, self.kind)

Measurement Types

In order to make instruments easer to use, and to make it easier to swap them
out when necessary (e.g. change method of collecting power), a number of
standard measurement types are defined. This way, for example, power will
always be reported as “power” in Watts, and never as “pwr” in milliWatts.
Currently defined measurement types are

	name

	units

	category

	count

	count

	

	percent

	percent

	

	time_us

	microseconds

	time

	time_ms

	milliseconds

	time

	temperature

	degrees

	thermal

	power

	watts

	power/energy

	voltage

	volts

	power/energy

	current

	amps

	power/energy

	energy

	joules

	power/energy

	tx

	bytes

	data transfer

	rx

	bytes

	data transfer

	tx/rx

	bytes

	data transfer

Available Instruments

This section lists instruments that are currently part of devlib.

Todo

Add other instruments

Baylibre ACME BeagleBone Black Cape

From the official project page [http://baylibre.com/acme/]:

[The Baylibre Another Cute Measurement Equipment (ACME)] is an extension for
the BeagleBone Black (the ACME Cape), designed to provide multi-channel power
and temperature measurements capabilities to the BeagleBone Black (BBB). It
comes with power and temperature probes integrating a power switch (the ACME
Probes), turning it into an advanced all-in-one power/temperature measurement
solution.

The ACME initiative is completely open source, from HW to SW drivers and
applications.

The Infrastructure

Retrieving measurement from the ACME through devlib requires:

	a BBB running the image built for using the ACME [https://gitlab.com/baylibre-acme/ACME-Software-Release/blob/master/README.md] (micro SD card required);

	an ACME cape on top of the BBB;

	at least one ACME probe 1 connected to the ACME cape;

	a BBB-host interface (typically USB or Ethernet) 2;

	a host (the one running devlib) with libiio (the Linux IIO interface) [https://github.com/analogdevicesinc/libiio]
installed, and a Python environment able to find the libiio Python wrapper
i.e. able to import iio as communications between the BBB and the
host rely on the Linux Industrial I/O Subsystem [https://wiki.analog.com/software/linux/docs/iio/iio] (IIO).

The ACME probes are built on top of the Texas Instruments INA226 [http://www.ti.com/lit/ds/symlink/ina226.pdf] and the
data acquisition chain is as follows:

[image: digraph target { rankdir = LR bgcolor = transparent subgraph cluster_target { subgraph cluster_BBB { node [style = filled, color = white]; style = filled; color = lightgrey; label = "BeagleBone Black"; drivers -> "IIO Daemon" [dir = both] } subgraph cluster_INA226 { node [style = filled, color = white]; style = filled; color = lightgrey; label = INA226; ADC -> Processing Processing -> Registers } subgraph cluster_inputs { node [style = filled, color = white]; style = filled; color = lightgrey; label = Inputs; "Bus Voltage" -> ADC; "Shunt Voltage" -> ADC; } Registers -> drivers [dir = both, label = I2C]; } subgraph cluster_IIO { style = none "IIO Daemon" -> "IIO Interface" [dir = both, label = "Eth./USB"] } }]

For reference, the software stack on the host is roughly given by:

[image: digraph host { rankdir = LR bgcolor = transparent subgraph cluster_host { subgraph cluster_backend { node [style = filled, color = white]; style = filled; color = lightgrey; label = Backend; "IIO Daemon" -> "C API" [dir = both] } subgraph cluster_Python { node [style = filled, color = white]; style = filled; color = lightgrey; label = Python; "C API" -> "iio Wrapper" [dir = both] "iio Wrapper" -> devlib [dir = both] devlib -> "User" [dir = both] } } subgraph cluster_IIO { style = none "IIO Interface" -> "IIO Daemon" [dir = both, label = "Eth./USB"] } }]

Ethernet was the only IIO Interface used and tested during the development of
this instrument. However,
USB seems to be supported [https://gitlab.com/baylibre-acme/ACME/issues/2].
The IIO library also provides “Local” and “XML” connections but these are to be
used when the IIO devices are directly connected to the host i.e. in our
case, if we were to run Python and devlib on the BBB. These are also untested.

Measuring Power

In IIO terminology, the ACME cape is an IIO context and ACME probes are IIO
devices with IIO channels. An input IIO channel (the ACME has no output
IIO channel) is a stream of samples and an ACME cape can be connected to up to
8 probes i.e. have 8 IIO devices. The probes are discovered at startup by
the IIO drivers on the BBB and are indexed according to the order in which they
are connected to the ACME cape (with respect to the “Probe X” connectors on
the cape).

[image: ACME Cape]

ACME Cape on top of a BBB: Notice the numbered probe connectors (
source [https://baylibre.com/wp-content/uploads/2015/11/20150916_BayLibre_ACME_RevB-010-1030x599.png])

Please note that the numbers on the PCB do not represent the index of a probe
in IIO; on top of being 1-based (as opposed to IIO device indexing being
0-based), skipped connectors do not result in skipped indices e.g. if three
probes are connected to the cape at Probe 1, Probe 3 and Probe 7,
IIO (and therefore the entire software stack, including devlib) will still
refer to them as devices 0, 1 and 2, respectively. Furthermore,
probe “hot swapping” does not seem to be supported.

INA226: The probing spearhead

An ACME probe has 5 IIO channels, 4 of which being “IIO wrappers” around what
the INA226 outputs (through its I2C registers): the bus voltage, the shunt
voltage, the shunt current and the load power. The last channel gives the
timestamps and is probably added further down the pipeline. A typical circuit
configuration for the INA226 (useful when shunt-based ACME probes are used as
their PCB does not contain the full circuit unlike the USB and jack variants)
is given by its datasheet:

[image: Typical circuit configuration, INA226]

Typical Circuit Configuration (source: Texas Instruments INA226 [http://www.ti.com/lit/ds/symlink/ina226.pdf])

The analog-to-digital converter (ADC)

The digital time-discrete sampled signal of the analog time-continuous input
voltage signal is obtained through an analog-to-digital converter (ADC). To
measure the “instantaneous input voltage”, the ADC “charges up or down” a
capacitor before measuring its charge.

The integration time is the time spend by the ADC acquiring the input signal
in its capacitor. The longer this time is, the more resilient the sampling
process is to unwanted noise. The drawback is that, if the integration time is
increased then the sampling rate decreases. This effect can be somewhat
compared to a low-pass filter.

As the INA226 alternatively connects its ADC to the bus voltage and shunt
voltage (see previous figure), samples are retrieved at a frequency of

\[\frac{1}{T_{bus} + T_{shunt}}\]

where \(T_X\) is the integration time for the \(X\) voltage.

As described below (BaylibreAcmeInstrument.reset), the
integration times for the bus and shunt voltage can be set separately which
allows a tradeoff of accuracy between signals. This is particularly useful as
the shunt voltage returned by the INA226 has a higher resolution than the bus
voltage (2.5 μV and 1.25 mV LSB, respectively) and therefore would benefit more
from a longer integration time.

As an illustration, consider the following sampled sine wave and notice how
increasing the integration time (of the bus voltage in this case) “smoothes”
out the signal:

[image: Illustration of the impact of the integration time]

Increasing the integration time increases the resilience to noise

Internal signal processing

The INA226 is able to accumulate samples acquired by its ADC and output to the
ACME board (technically, to its I2C registers) the average value of \(N\)
samples. This is called oversampling. While the integration time somewhat
behaves as an analog low-pass filter, the oversampling feature is a digital
low-pass filter by definition. The former should be set to reduce sampling
noise (i.e. noise on a single sample coming from the sampling process) while
the latter should be used to filter out high-frequency noise present in the
input signal and control the sampling frequency.

Therefore, samples are available at the output of the INA226 at a frequency

\[\frac{1}{N(T_{bus} + T_{shunt})}\]

and oversampling ratio provides a way to control the output sampling frequency
(i.e. to limit the required output bandwidth) while making sure the signal
fidelity is as desired.

The 4 IIO channels coming from the INA226 can be grouped according to their
respective origins: the bus and shunt voltages are measured (and, potentially
filtered) while the shunt current and load power are computed. Indeed, the
INA226 contains on-board fixed-point arithmetic units to compute the trivial
expressions:

\[I_{shunt} = \frac{V_{shunt}}{R_{shunt}}
,\ \
P_{load} = V_{load}\ I_{load}
 \approx V_{bus} \ I_{shunt}\]

A functional block diagram of this is also given by the datasheet:

[image: Functional block diagram, INA226]

Acquisition and Processing: Functional Block Diagram
(source: Texas Instruments INA226 [http://www.ti.com/lit/ds/symlink/ina226.pdf])

In the end, there are therefore 3 channels (bus voltage, shunt voltage and
timestamps) that are necessary to figure out the load power consumption, while
the others are being provided for convenience e.g. in case the rest of the
hardware does not have the computing power to make the computation.

Sampling Frequency Issues

It looks like the INA226-ACME-BBB setup has a bottleneck preventing the
sampling frequency to go higher than ~1.4 kHz (the maximal theoretical sampling
frequency is ~3.6 kHz). We know that this issue is not internal to the ADC
itself (inside of the INA226) because modifying the integration time affects
the output signal even when the sampling frequency is capped (as shown above)
but it may come from anywhere after that.

Because of this, there is no point in using a (theoretical) sampling frequency
that is larger than 1.4 kHz. But it is important to note that the ACME will
still report the theoretical sampling rate (probably computed with the formula
given above) through BaylibreAcmeInstrument.sample_rate_hz and
IIOINA226Instrument.sample_rate_hz even if it differs from the actual
sampling rate.

Note that, even though this is obvious for the theoretical sampling rate, the
specific values of the bus and shunt integration times do not seem to have an
influence on the measured sampling rate; only their sum matters. This further
points toward a data-processing bottleneck rather than a hardware bug in the
acquisition device.

The following chart compares the evolution of the measured sampling rate with
the expected one as we modify it through \(T_{shunt}\), \(T_{bus}\) and
\(N\):

[image: Sampling frequency does not go higher than 1.4 kHz]

Theoretical vs measured sampling rates

Furthermore, because the transactions are done through a buffer (see next
section), if the sampling frequency is too low, the connection may time-out
before the buffer is full and ready to be sent. This may be fixed in an
upcoming release.

Buffer-based transactions

Samples made available by the INA226 are retrieved by the BBB and stored in a
buffer which is sent back to the host once it is full (see
buffer_samples_count in BaylibreAcmeInstrument.setup for setting its
size). Therefore, the larger the buffer is, the longer it takes to be
transmitted back but the less often it has to be transmitted. To illustrate
this, consider the following graphs showing the time difference between
successive samples in a retrieved signal when the size of the buffer changes:

[image: Buffer size impact on the sampled signal]

Impact of the buffer size on the sampling regularity

devlib API

ACME Cape + BBB (IIO Context)

devlib provides wrapper classes for all the IIO connections to an IIO context
given by libiio (the Linux IIO interface) [https://github.com/analogdevicesinc/libiio] however only the network-based one
has been tested. For the other classes, please refer to the official IIO
documentation for the meaning of their constructor parameters.

	
class devlib.instrument.baylibre_acme.BaylibreAcmeInstrument(target=None, iio_context=None, use_base_iio_context=False, probe_names=None)

	Base class wrapper for the ACME instrument which itself is a wrapper for the
IIO context base class. This class wraps around the passed iio_context;
if use_base_iio_context is True, iio_context is first passed to
the iio.Context base class (see its documentation for how this
parameter is then used), else iio_context is expected to be a valid
instance of iio.Context.

probe_names is expected to be a string or list of strings; if passed,
the probes in the instance are named according to it in the order in which
they are discovered (see previous comment about probe discovery and
BaylibreAcmeInstrument.probes). There should be as many
probe_names as there are probes connected to the ACME. By default, the
probes keep their IIO names.

To ensure that the setup is reliable, devlib requires minimal versions
for iio, the IIO drivers and the ACME BBB SD image.

	
class devlib.instrument.baylibre_acme.BaylibreAcmeNetworkInstrument(target=None, hostname=None, probe_names=None)

	Child class of BaylibreAcmeInstrument for Ethernet-based IIO
communication. The hostname should be the IP address or network name of
the BBB. If it is None, the IIOD_REMOTE environment variable will be
used as the hostname. If that environment variable is empty, the server will
be discovered using ZeroConf. If that environment variable is not set, a
local context is created.

	
class devlib.instrument.baylibre_acme.BaylibreAcmeXMLInstrument(target=None, xmlfile=None, probe_names=None)

	Child class of BaylibreAcmeInstrument using the XML backend of the
IIO library and building an IIO context from the provided xmlfile (a
string giving the path to the file is expected).

	
class devlib.instrument.baylibre_acme.BaylibreAcmeLocalInstrument(target=None, probe_names=None)

	Child class of BaylibreAcmeInstrument using the Local IIO backend.

	
BaylibreAcmeInstrument.mode

	The collection mode for the ACME is CONTINUOUS.

	
BaylibreAcmeInstrument.setup(shunt_resistor, integration_time_bus, integration_time_shunt, oversampling_ratio, buffer_samples_count=None, buffer_is_circular=False, absolute_timestamps=False, high_resolution=True)

	The shunt_resistor (\(R_{shunt}\) [\(\mu\Omega\)]),
integration_time_bus (\(T_{bus}\) [s]), integration_time_shunt
(\(T_{shunt}\) [s]) and oversampling_ratio (\(N\)) are copied
into on-board registers inside of the INA226 to be used as described above.
Please note that there exists a limited set of accepted values for these
parameters; for the integration times, refer to
IIOINA226Instrument.INTEGRATION_TIMES_AVAILABLE and for the
oversampling_ratio, refer to
IIOINA226Instrument.OVERSAMPLING_RATIOS_AVAILABLE. If all probes share
the same value for these attributes, this class provides
BaylibreAcmeInstrument.OVERSAMPLING_RATIOS_AVAILABLE and
BaylibreAcmeInstrument.INTEGRATION_TIMES_AVAILABLE.

The buffer_samples_count is the size of the IIO buffer expressed in
samples; this is independent of the number of active channels! By default,
if buffer_samples_count is not passed, the IIO buffer of size
IIOINA226Instrument.sample_rate_hz is created meaning that a buffer
transfer happens roughly every second.

If absolute_timestamps is False, the first sample from the
timestamps channel is substracted from all the following samples of this
channel, effectively making its signal start at 0.

high_resolution is used to enable a mode where power and current are
computed offline on the host machine running devlib: even if the user
asks for power or current channels, they are not enabled in hardware
(INA226) and instead the necessary voltage signal(s) are enabled to allow
the computation of the desired signals using the FPU of the host (which is
very likely to be much more accurate than the fixed-point 16-bit unit of the
INA226).

A circular buffer can be used by setting buffer_is_circular to True
(directly passed to iio.Buffer).

Each one of the arguments of this method can either be a single value which
will be used for all probes or a list of values giving the corresponding
setting for each probe (in the order of probe_names passed to the
constructor) with the exception of absolute_timestamps (as all signals
are resampled onto a common time signal) which, if passed as an array, will
be True only if all of its elements are True.

	
BaylibreAcmeInstrument.reset(sites=None, kinds=None, channels=None)

	BaylibreAcmeInstrument.setup() should always be called before
calling this method so that the hardware is correctly configured. Once this
method has been called, BaylibreAcmeInstrument.setup() can only be
called again once BaylibreAcmeInstrument.teardown() has been called.

This method inherits from Instrument.reset(); call
list_channels() for a list of available channels from a given
instance.

Please note that the size of the transaction buffer is proportional to the
number of active channels (for a fixed buffer_samples_count). Therefore,
limiting the number of active channels allows to limit the required
bandwidth. high_resolution in BaylibreAcmeInstrument.setup()
limits the number of active channels to the minimum required.

	
BaylibreAcmeInstrument.start()

	BaylibreAcmeInstrument.reset() should always be called before
calling this method so that the right channels are active,
BaylibreAcmeInstrument.stop() should always be called after
calling this method and no other method of the object should be called
in-between.

This method starts the sampling process of the active channels. The samples
are stored but are not available until BaylibreAcmeInstrument.stop()
has been called.

	
BaylibreAcmeInstrument.stop()

	BaylibreAcmeInstrument.start() should always be called before
calling this method so that samples are being captured.

This method stops the sampling process of the active channels and retrieves
and pre-processes the samples. Once this function has been called, the
samples are made available through BaylibreAcmeInstrument.get_data().
Note that it is safe to call BaylibreAcmeInstrument.start() after this
method returns but this will discard the data previously acquired.

When this method returns, It is guaranteed that the content of at least one
IIO buffer will have been captured.

If different sampling frequencies were used for the different probes, the
signals are resampled to share the time signal with the highest sampling
frequency.

	
BaylibreAcmeInstrument.teardown()

	This method can be called at any point (unless otherwise specified e.g.
BaylibreAcmeInstrument.start()) to deactive any active probe once
BaylibreAcmeInstrument.reset() has been called. This method does not
affect already captured samples.

The following graph gives a summary of the allowed calling sequence(s) where
each edge means “can be called directly after”:

[image: digraph acme_calls { rankdir = LR bgcolor = transparent __init__ -> setup -> reset -> start -> stop -> teardown teardown:sw -> setup [style=dashed] teardown -> reset [style=dashed] stop -> reset [style=dashed] stop:nw -> start [style=dashed] reset -> teardown [style=dashed] }]

	
BaylibreAcmeInstrument.get_data(outfile=None)

	Inherited from Instrument.get_data(). If outfile is None
(default), the samples are returned as a pandas.DataFrame with the
channels as columns. Else, it behaves like the parent class, returning a
MeasurementCsv.

	
BaylibreAcmeInstrument.add_channel()

	Should not be used as new channels are discovered through the IIO context.

	
BaylibreAcmeInstrument.list_channels()

	Inherited from Instrument.list_channels().

	
BaylibreAcmeInstrument.sample_rate_hz

	

	
BaylibreAcmeInstrument.OVERSAMPLING_RATIOS_AVAILABLE

	

	
BaylibreAcmeInstrument.INTEGRATION_TIMES_AVAILABLE

	These attributes return the corresponding attributes of the probes if they
all share the same value (and are therefore provided to avoid reading from a
single probe and expecting the others to share this value). They should be
used whenever the assumption that all probes share the same value for the
accessed attribute is made. For this reason, an exception is raised if it is
not the case.

If probes are active (i.e. BaylibreAcmeInstrument.reset() has been
called), only these are read for the value of the attribute (as others have
been tagged to be ignored). If not, all probes are used.

	
BaylibreAcmeInstrument.probes

	Dictionary of IIOINA226Instrument instances representing the probes
connected to the ACME. If provided to the constructor, the keys are the
probe_names that were passed.

ACME Probes (IIO Devices)

The following class is not supposed to be instantiated by the user code: the
API is provided as the ACME probes can be accessed through the
BaylibreAcmeInstrument.probes attribute.

	
class devlib.instrument.baylibre_acme.IIOINA226Instrument(iio_device)

	This class is a wrapper for the iio.Device class and takes a valid
instance as iio_device. It is not supposed to be instantiated by the
user and its partial documentation is provided for read-access only.

	
IIOINA226Instrument.shunt_resistor

	

	
IIOINA226Instrument.sample_rate_hz

	

	
IIOINA226Instrument.oversampling_ratio

	

	
IIOINA226Instrument.integration_time_shunt

	

	
IIOINA226Instrument.integration_time_bus

	

	
IIOINA226Instrument.OVERSAMPLING_RATIOS_AVAILABLE

	

	
IIOINA226Instrument.INTEGRATION_TIMES_AVAILABLE

	These attributes are provided for reference and should not be assigned to
but can be used to make the user code more readable, if needed. Please note
that, as reading these attributes reads the underlying value from the
hardware, they should not be read when the ACME is active i.e when
BaylibreAcmeInstrument.setup() has been called without calling
BaylibreAcmeInstrument.teardown().

Examples

The following example shows a basic use of an ACME at IP address
ACME_IP_ADDR with 2 probes connected, capturing all the channels during
(roughly) 10 seconds at a sampling rate of 613 Hz and outputing the
measurements to the CSV file acme.csv:

import time
import devlib

acme = devlib.BaylibreAcmeNetworkInstrument(hostname=ACME_IP_ADDR,
 probe_names=['battery', 'usb'])

int_times = acme.INTEGRATION_TIMES_AVAILABLE
ratios = acme.OVERSAMPLING_RATIOS_AVAILABLE

acme.setup(shunt_resistor=20000,
 integration_time_bus=int_times[1],
 integration_time_shunt=int_times[1],
 oversampling_ratio=ratios[1])

acme.reset()
acme.start()
time.sleep(10)
acme.stop()
acme.get_data('acme.csv')
acme.teardown()

It is common to have different resistances for different probe shunt resistors.
Furthermore, we may want to have different sampling frequencies for different
probes (e.g. if it is known that the USB voltage changes rather slowly).
Finally, it is possible to set the integration times for the bus and shunt
voltages of a same probe to different values. The following call to
BaylibreAcmeInstrument.setup() illustrates these:

acme.setup(shunt_resistor=[20000, 10000],
 integration_time_bus=[int_times[2], int_times[3]],
 integration_time_shunt=[int_times[3], int_times[4]],
 oversampling_ratio=[ratios[0], ratios[1]])

for n, p in acme.probes.iteritems():
 print('{}:'.format(n))
 print(' T_bus = {} s'.format(p.integration_time_bus))
 print(' T_shn = {} s'.format(p.integration_time_shunt))
 print(' N = {}'.format(p.oversampling_ratio))
 print(' freq = {} Hz'.format(p.sample_rate_hz))

Output:
#
battery:
T_bus = 0.000332 s
T_shn = 0.000588 s
N = 1
freq = 1087 Hz
usb:
T_bus = 0.000588 s
T_shn = 0.0011 s
N = 4
freq = 148 Hz

Please keep in mind that calling acme.get_data('acme.csv') after capturing
samples with this setup will output signals with the same sampling frequency
(the highest one among the sampling frequencies) as the signals are resampled
to output a single time signal.

Footnotes

	1

	There exist different variants of the ACME probe (USB, Jack, shunt resistor) but they all use the same probing hardware (the TI INA226) and don’t differ from the point of view of the software stack (at any level, including devlib, the highest one)

	2

	Be careful that in cases where multiple ACME boards are being used, it may be required to manually handle name conflicts

Collectors

The Collector API provide a consistent way of collecting arbitrary data from
a target. Data is collected via an instance of a class derived from
CollectorBase.

Example

The following example shows how to use a collector to read the logcat output
from an Android target.

import and instantiate the Target and the collector
(note: this assumes exactly one android target connected
to the host machine).
In [1]: from devlib import AndroidTarget, LogcatCollector

In [2]: t = AndroidTarget()

Set up the collector on the Target.

In [3]: collector = LogcatCollector(t)

Configure the output file path for the collector to use.
In [4]: collector.set_output('adb_log.txt')

Reset the Collector to preform any required configuration or preparation.
In [5]: collector.reset()

Start Collecting
In [6]: collector.start()

Wait for some output to be generated
In [7]: sleep(10)

Stop Collecting
In [8]: collector.stop()

Retrieved the collected data
In [9]: output = collector.get_data()

Display the returned ``CollectorOutput`` Object.
In [10]: output
Out[10]: [<adb_log.txt (file)>]

In [11] log_file = output[0]

Get the path kind of the the returned CollectorOutputEntry.
In [12]: log_file.path_kind
Out[12]: 'file'

Get the path of the returned CollectorOutputEntry.
In [13]: log_file.path
Out[13]: 'adb_log.txt'

Find the full path to the log file.
In [14]: os.path.join(os.getcwd(), logfile)
Out[14]: '/tmp/adb_log.txt'

API

CollectorBase

	
class devlib.collector.CollectorBase(target, **kwargs)

	A CollectorBase is the the base class and API that should be
implemented to allowing collecting various data from a traget e.g. traces,
logs etc.

	
Collector.setup(*args, **kwargs)

	This will set up the collector on the target. Parameters this method takes
are particular to subclasses (see documentation for specific collectors
below). What actions are performed by this method are also
collector-specific. Usually these will be things like installing
executables, starting services, deploying assets, etc. Typically, this method
needs to be invoked at most once per reboot of the target (unless
teardown() has been called), but see documentation for the collector
you’re interested in.

	
CollectorBase.reset()

	This can be used to configure a collector for collection. This must be invoked
before start() is called to begin collection.

	
CollectorBase.start()

	Starts collecting from the target.

	
CollectorBase.stop()

	Stops collecting from target. Must be called after
start().

	
CollectorBase.set_output(output_path)

	Configure the output path for the particular collector. This will be either
a directory or file path which will be used when storing the data. Please see
the individual Collector documentation for more information.

	
CollectorBase.get_data()

	The collected data will be return via the previously specified output_path.
This method will return a CollectorOutput object which is a subclassed
list object containing individual CollectorOutputEntry objects with details
about the individual output entry.

CollectorOutputEntry

This object is designed to allow for the output of a collector to be processed
generically. The object will behave as a regular string containing the path to
underlying output path and can be used directly in os.path operations.

	
CollectorOutputEntry.path

	The file path for the corresponding output item.

	
CollectorOutputEntry.path_kind

	The type of output the is specified in the path attribute. Current valid
kinds are: file and directory.

	
CollectorOutputEntry.__init__(path, path_kind)

	Initialises a CollectorOutputEntry object with the desired file path and
kind of file path specified.

Available Collectors

This section lists collectors that are currently part of devlib.

Todo

Add collectors

Derived Measurements

The DerivedMeasurements API provides a consistent way of performing post
processing on a provided MeasurementCsv file.

Example

The following example shows how to use an implementation of a
DerivedMeasurement to obtain a list of calculated DerivedMetric’s.

Import the relevant derived measurement module
in this example the derived energy module is used.
In [1]: from devlib import DerivedEnergyMeasurements

Obtain a MeasurementCsv file from an instrument or create from
existing .csv file. In this example an existing csv file is used which was
created with a sampling rate of 100Hz
In [2]: from devlib import MeasurementsCsv
In [3]: measurement_csv = MeasurementsCsv('/example/measurements.csv', sample_rate_hz=100)

Process the file and obtain a list of the derived measurements
In [4]: derived_measurements = DerivedEnergyMeasurements.process(measurement_csv)

In [5]: derived_measurements
Out[5]: [device_energy: 239.1854075 joules, device_power: 5.5494089227 watts]

API

Derived Measurements

	
class devlib.derived.DerivedMeasurements

	The DerivedMeasurements class provides an API for post-processing
instrument output offline (i.e. without a connection to the target device) to
generate additional metrics.

	
DerivedMeasurements.process(measurement_csv)

	Process a MeasurementsCsv, returning a list of
DerivedMetric and/or MeasurementsCsv objects that have been
derived from the input. The exact nature and ordering of the list members
is specific to individual ‘class’DerivedMeasurements implementations.

	
DerivedMeasurements.process_raw(*args)

	Process raw output from an instrument, returning a list DerivedMetric
and/or MeasurementsCsv objects that have been derived from the
input. The exact nature and ordering of the list members is specific to
individual ‘class’DerivedMeasurements implementations.

The arguments to this method should be paths to raw output files generated by
an instrument. The number and order of expected arguments is specific to
particular implementations.

Derived Metric

	
class devlib.derived.DerivedMetric

	Represents a metric derived from previously collected Measurement``s.
Unlike, a ``Measurement, this was not measured directly from the target.

	
DerivedMetric.name

	The name of the derived metric. This uniquely defines a metric – two
DerivedMetric objects with the same name represent to instances of
the same metric (e.g. computed from two different inputs).

	
DerivedMetric.value

	The numeric value of the metric that has been computed for a particular
input.

	
DerivedMetric.measurement_type

	The MeasurementType of the metric. This indicates which conceptual
category the metric falls into, its units, and conversions to other
measurement types.

	
DerivedMetric.units

	The units in which the metric’s value is expressed.

Available Derived Measurements

Note

If a method of the API is not documented for a particular
implementation, that means that it s not overridden by that
implementation. It is still safe to call it – an empty list will be
returned.

Energy

	
class devlib.derived.energy.DerivedEnergyMeasurements

	The DerivedEnergyMeasurements class is used to calculate average power
and cumulative energy for each site if the required data is present.

The calculation of cumulative energy can occur in 3 ways. If a site
contains energy results, the first and last measurements are extracted
and the delta calculated. If not, a timestamp channel will be used to
calculate the energy from the power channel, failing back to using the sample
rate attribute of the MeasurementCsv file if timestamps are not
available. If neither timestamps or a sample rate are available then an error
will be raised.

	
DerivedEnergyMeasurements.process(measurement_csv)

	This will return total cumulative energy for each energy channel, and the
average power for each power channel in the input CSV. The output will contain
all energy metrics followed by power metrics. The ordering of both will match
the ordering of channels in the input. The metrics will by named based on the
sites of the corresponding channels according to the following patters:
"<site>_total_energy" and "<site>_average_power".

FPS / Rendering

	
class devlib.derived.fps.DerivedGfxInfoStats(drop_threshold=5, suffix='-fps', filename=None, outdir=None)

	Produces FPS (frames-per-second) and other derived statistics from
GfxInfoFramesInstrument output. This takes several optional
parameters in creation:

	Parameters

	
	drop_threshold – FPS in an application, such as a game, which this
processor is primarily targeted at, cannot reasonably
drop to a very low value. This is specified to this
threshold. If an FPS for a frame is computed to be
lower than this threshold, it will be dropped on the
assumption that frame rendering was suspended by the
system (e.g. when idling), or there was some sort of
error, and therefore this should be used in
performance calculations. defaults to 5.

	suffix – The name of the generated per-frame FPS csv file will be
derived from the input frames csv file by appending this
suffix. This cannot be specified at the same time as
a filename.

	filename – As an alternative to the suffix, a complete file name for
FPS csv can be specified. This cannot be used at the same
time as the suffix.

	outdir – By default, the FPS csv file will be placed in the same
directory as the input frames csv file. This can be changed
by specifying an alternate directory here

Warning

Specifying both filename and oudir will mean that exactly
the same file will be used for FPS output on each invocation of
process() (even for different inputs) resulting in previous
results being overwritten.

	
DerivedGfxInfoStats.process(measurement_csv)

	Process the fames csv generated by GfxInfoFramesInstrument and
returns a list containing exactly three entries: DerivedMetrics
fps and total_frames, followed by a MeasurentCsv containing
per-frame FPSs values.

	
DerivedGfxInfoStats.process_raw(gfxinfo_frame_raw_file)

	As input, this takes a single argument, which should be the path to the raw
output file of GfxInfoFramesInstrument. The returns stats
accumulated by gfxinfo. At the time of writing, the stats (in order) are:
janks, janks_pc (percentage of all frames),
render_time_50th_ptile (50th percentile, or median, for time to render a
frame), render_time_90th_ptile, render_time_95th_ptile,
render_time_99th_ptile, missed_vsync, hight_input_latency,
slow_ui_thread, slow_bitmap_uploads, slow_issue_draw_commands.
Please see the gfxinfo documentation [https://developer.android.com/training/testing/performance.html] for details.

	
class devlib.derived.fps.DerivedSurfaceFlingerStats(drop_threshold=5, suffix='-fps', filename=None, outdir=None)

	Produces FPS (frames-per-second) and other derived statistics from
SurfaceFlingerFramesInstrument output. This takes several optional
parameters in creation:

	Parameters

	
	drop_threshold – FPS in an application, such as a game, which this
processor is primarily targeted at, cannot reasonably
drop to a very low value. This is specified to this
threshold. If an FPS for a frame is computed to be
lower than this threshold, it will be dropped on the
assumption that frame rendering was suspended by the
system (e.g. when idling), or there was some sort of
error, and therefore this should be used in
performance calculations. defaults to 5.

	suffix – The name of the generated per-frame FPS csv file will be
derived from the input frames csv file by appending this
suffix. This cannot be specified at the same time as
a filename.

	filename – As an alternative to the suffix, a complete file name for
FPS csv can be specified. This cannot be used at the same
time as the suffix.

	outdir – By default, the FPS csv file will be placed in the same
directory as the input frames csv file. This can be changed
by specifying an alternate directory here

Warning

Specifying both filename and oudir will mean that exactly
the same file will be used for FPS output on each invocation of
process() (even for different inputs) resulting in previous
results being overwritten.

	
DerivedSurfaceFlingerStats.process(measurement_csv)

	Process the fames csv generated by SurfaceFlingerFramesInstrument and
returns a list containing exactly three entries: DerivedMetrics
fps and total_frames, followed by a MeasurentCsv containing
per-frame FPSs values, followed by janks janks_pc, and
missed_vsync metrics.

Platform

Platforms describe the system underlying the OS.
They encapsulate hardware- and firmware-specific details. In most cases, the
generic Platform class, which gets used if a
platform is not explicitly specified on Target
creation, will be sufficient. It will automatically query as much platform
information (such CPU topology, hardware model, etc) if it was not specified
explicitly by the user.

	
class devlib.platform.Platform(name=None, core_names=None, core_clusters=None, big_core=None, model=None, modules=None)

	
	Parameters

	
	name – A user-friendly identifier for the platform.

	core_names – A list of CPU core names in the order they appear
registered with the OS. If they are not specified,
they will be queried at run time.

	core_clusters – A list with cluster ids of each core (starting with
0). If this is not specified, clusters will be
inferred from core names (cores with the same name are
assumed to be in a cluster).

	big_core – The name of the big core in a big.LITTLE system. If this is
not specified it will be inferred (on systems with exactly
two clusters).

	model – Model name of the hardware system. If this is not specified it
will be queried at run time.

	modules – Modules with additional functionality supported by the
platform (e.g. for handling flashing, rebooting, etc). These
would be added to the Target’s modules. (See Modules).

Versatile Express

The generic platform may be extended to support hardware- or
infrastructure-specific functionality. Platforms exist for ARM
VersatileExpress-based Juno and TC2 development boards. In
addition to the standard Platform parameters above,
these platforms support additional configuration:

	
class devlib.platform.arm.VersatileExpressPlatform

	Normally, this would be instantiated via one of its derived classes
(Juno or TC2) that set appropriate defaults for some of
the parameters.

	Parameters

	
	serial_port – Identifies the serial port (usual a /dev node) on which the
device is connected.

	baudrate – Baud rate for the serial connection. This defaults to
115200 for Juno and 38400 for
TC2.

	vemsd_mount – Mount point for the VEMSD (Versatile Express MicroSD card
that is used for board configuration files and firmware
images). This defaults to "/media/JUNO" for
Juno and "/media/VEMSD" for TC2,
though you would most likely need to change this for
your setup as it would depend both on the file system
label on the MicroSD card, and on how the card was
mounted on the host system.

	hard_reset_method – Specifies the method for hard-resetting the devices
(e.g. if it becomes unresponsive and normal reboot
method doesn’t not work). Currently supported methods
are:

	dtr

	reboot by toggling DTR line on the serial
connection (this is enabled via a DIP switch
on the board).

	reboottxt

	reboot by writing a filed called
reboot.txt to the root of the VEMSD
mount (this is enabled via board
configuration file).

This defaults to dtr for Juno and
reboottxt for TC2.

	bootloader – Specifies the bootloader configuration used by the board.
The following values are currently supported:

	uefi

	Boot via UEFI menu, by selecting the entry
specified by uefi_entry parameter. If this
entry does not exist, it will be automatically
created based on values provided for image,
initrd, fdt, and bootargs parameters.

	uefi-shell

	Boot by going via the UEFI shell.

	u-boot

	Boot using Das U-Boot.

	bootmon

	Boot directly via Versatile Express Bootmon
using the values provided for image,
initrd, fdt, and bootargs
parameters.

This defaults to u-boot for Juno and
bootmon for TC2.

	flash_method – Specifies how the device is flashed. Currently, only
"vemsd" method is supported, which flashes by
writing firmware images to an appropriate location on
the VEMSD.

	image – Specfies the kernel image name for uefi or bootmon boot.

	fdt – Specifies the device tree blob for uefi or bootmon boot.

	initrd – Specifies the ramdisk image for uefi or bootmon boot.

	bootargs – Specifies the boot arguments that will be pass to the
kernel by the bootloader.

	uefi_entry – Then name of the UEFI entry to be used/created by
uefi bootloader.

	ready_timeout – Timeout, in seconds, for the time it takes the
platform to become ready to accept connections. Note:
this does not mean that the system is fully booted;
just that the services needed to establish a
connection (e.g. sshd or adbd) are up.

Gem5 Simulation Platform

By initialising a Gem5SimulationPlatform, devlib will start a gem5 simulation
(based upon the arguments the user provided) and then connect to it using
Gem5Connection. Using the methods discussed above,
some methods of the Target will be altered slightly to
better suit gem5.

	
class devlib.platform.gem5.Gem5SimulationPlatform(name, host_output_dir, gem5_bin, gem5_args, gem5_virtio, gem5_telnet_port=None)

	During initialisation the gem5 simulation will be kicked off (based upon the
arguments provided by the user) and the telnet port used by the gem5
simulation will be intercepted and stored for use by the
Gem5Connection.

	Parameters

	
	name – Platform name

	host_output_dir – Path on the host where the gem5 outputs will be
placed (e.g. stats file)

	gem5_bin – gem5 binary

	gem5_args – Arguments to be passed onto gem5 such as config file etc.

	gem5_virtio – Arguments to be passed onto gem5 in terms of the virtIO
device used to transfer files between the host and the gem5 simulated
system.

	gem5_telnet_port – Not yet in use as it would be used in future
implementations of devlib in which the user could
use the platform to pick up an existing and running
simulation.

	
Gem5SimulationPlatform.init_target_connection([target])

	Based upon the OS defined in the Target, the type of
Gem5Connection will be set
(AndroidGem5Connection or
AndroidGem5Connection).

	
Gem5SimulationPlatform.update_from_target([target])

	This method provides specific setup procedures for a gem5 simulation. First
of all, the m5 binary will be installed on the guest (if it is not present).
Secondly, three methods in the Target will be
monkey-patched:

	reboot: this is not supported in gem5

	reset: this is not supported in gem5

	capture_screen: gem5 might already have screencaps so the
monkey-patched method will first try to
transfer the existing screencaps.
In case that does not work, it will fall back
to the original Target implementation
of capture_screen().

Finally, it will call the parent implementation of update_from_target().

	
Gem5SimulationPlatform.setup([target])

	The m5 binary be installed, if not yet installed on the gem5 simulated system.
It will also resize the gem5 shell, to avoid line wrapping issues.

Connection

A Connection abstracts an actual physical connection to a device. The
first connection is created when Target.connect() method is called. If a
Target is used in a multi-threaded environment, it will
maintain a connection for each thread in which it is invoked. This allows
the same target object to be used in parallel in multiple threads.

Connections will be automatically created and managed by
Targets, so there is usually no reason to create one
manually. Instead, configuration for a Connection is passed as
connection_settings parameter when creating a
Target. The connection to be used target is also
specified on instantiation by conn_cls parameter, though all concrete
Target implementations will set an appropriate
default, so there is typically no need to specify this explicitly.

Connection classes are not a part of an inheritance hierarchy, i.e.
they do not derive from a common base. Instead, a Connection is any
class that implements the following methods.

	
push(self, sources, dest, timeout=None)

	Transfer a list of files from the host machine to the connected device.

	Parameters

	
	sources – list of paths on the host

	dest – path to the file or folder on the connected device.

	timeout – timeout (in seconds) for the transfer of each file; if the
transfer does not complete within this period, an exception will be
raised.

	
pull(self, sources, dest, timeout=None)

	Transfer a list of files from the connected device to the host machine.

	Parameters

	
	sources – list of paths on the connected device.

	dest – path to the file or folder on the host

	timeout – timeout (in seconds) for the transfer for each file; if the
transfer does not complete within this period, an exception will be
raised.

	
execute(self, command, timeout=None, check_exit_code=False, as_root=False, strip_colors=True, will_succeed=False)

	Execute the specified command on the connected device and return its output.

	Parameters

	
	command – The command to be executed.

	timeout – Timeout (in seconds) for the execution of the command. If
specified, an exception will be raised if execution does not complete
with the specified period.

	check_exit_code – If True the exit code (on connected device)
from execution of the command will be checked, and an exception will be
raised if it is not 0.

	as_root – The command will be executed as root. This will fail on
unrooted connected devices.

	strip_colours – The command output will have colour encodings and
most ANSI escape sequences striped out before returning.

	will_succeed – The command is assumed to always succeed, unless there is
an issue in the environment like the loss of network connectivity. That
will make the method always raise an instance of a subclass of
DevlibTransientError when the command fails, instead of a
DevlibStableError.

	
background(self, command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, as_root=False)

	Execute the command on the connected device, invoking it via subprocess on the host.
This will return subprocess.Popen instance for the command.

	Parameters

	
	command – The command to be executed.

	stdout – By default, standard output will be piped from the subprocess;
this may be used to redirect it to an alternative file handle.

	stderr – By default, standard error will be piped from the subprocess;
this may be used to redirect it to an alternative file handle.

	as_root – The command will be executed as root. This will fail on
unrooted connected devices.

Note

This will block the connection until the command completes.

Note

The above methods are directly wrapped by Target methods,
however note that some of the defaults are different.

	
cancel_running_command(self)

	Cancel a running command (previously started with background()) and free up the connection.
It is valid to call this if the command has already terminated (or if no
command was issued), in which case this is a no-op.

	
close(self)

	Close the connection to the device. The Connection object should not
be used after this method is called. There is no way to reopen a previously
closed connection, a new connection object should be created instead.

Note

There is no open() method, as the connection is assumed to be
opened on instantiation.

Connection Types

	
class devlib.utils.android.AdbConnection(device=None, timeout=None, adb_server=None, adb_as_root=False, connection_attempts=MAX_ATTEMPTS, poll_transfers=False, start_transfer_poll_delay=30, total_transfer_timeout=3600, transfer_poll_period=30)

	A connection to an android device via adb (Android Debug Bridge).
adb is part of the Android SDK (though stand-alone versions are also
available).

	Parameters

	
	device – The name of the adb device. This is usually a unique hex
string for USB-connected devices, or an ip address/port
combination. To see connected devices, you can run adb
devices on the host.

	timeout – Connection timeout in seconds. If a connection to the device
is not established within this period, HostError
is raised.

	adb_server – Allows specifying the address of the adb server to use.

	adb_as_root – Specify whether the adb server should be restarted in root mode.

	connection_attempts – Specify how many connection attempts, 10 seconds
apart, should be attempted to connect to the device.
Defaults to 5.

	poll_transfers – Specify whether file transfers should be polled. Polling
monitors the progress of file transfers and periodically
checks whether they have stalled, attempting to cancel
the transfers prematurely if so.

	start_transfer_poll_delay – If transfers are polled, specify the length of
time after a transfer has started before polling
should start.

	total_transfer_timeout – If transfers are polled, specify the total amount of time
to elapse before the transfer is cancelled, regardless
of its activity.

	transfer_poll_period – If transfers are polled, specify the period at which
the transfers are sampled for activity. Too small values
may cause the destination size to appear the same over
one or more sample periods, causing improper transfer
cancellation.

	
class devlib.utils.ssh.SshConnection(host, username, password=None, keyfile=None, port=22, timeout=None, platform=None, sudo_cmd='sudo -- sh -c {}', strict_host_check=True, use_scp=False, poll_transfers=False, start_transfer_poll_delay=30, total_transfer_timeout=3600, transfer_poll_period=30)

	A connection to a device on the network over SSH.

	Parameters

	
	host – SSH host to which to connect

	username – username for SSH login

	password – password for the SSH connection

Note

To connect to a system without a password this
parameter should be set to an empty string otherwise
ssh key authentication will be attempted.

Note

In order to user password-based authentication,
sshpass utility must be installed on the
system.

	keyfile – Path to the SSH private key to be used for the connection.

Note

keyfile and password can’t be specified
at the same time.

	port – TCP port on which SSH server is listening on the remote device.
Omit to use the default port.

	timeout – Timeout for the connection in seconds. If a connection
cannot be established within this time, an error will be
raised.

	platform – Specify the platform to be used. The generic Platform
class is used by default.

	sudo_cmd – Specify the format of the command used to grant sudo access.

	strict_host_check – Specify the ssh connection parameter StrictHostKeyChecking,

	use_scp – Use SCP for file transfers, defaults to SFTP.

	poll_transfers – Specify whether file transfers should be polled. Polling
monitors the progress of file transfers and periodically
checks whether they have stalled, attempting to cancel
the transfers prematurely if so.

	start_transfer_poll_delay – If transfers are polled, specify the length of
time after a transfer has started before polling
should start.

	total_transfer_timeout – If transfers are polled, specify the total amount of time
to elapse before the transfer is cancelled, regardless
of its activity.

	transfer_poll_period – If transfers are polled, specify the period at which
the transfers are sampled for activity. Too small values
may cause the destination size to appear the same over
one or more sample periods, causing improper transfer
cancellation.

	
class devlib.utils.ssh.TelnetConnection(host, username, password=None, port=None, timeout=None, password_prompt=None, original_prompt=None)

	A connection to a device on the network over Telenet.

Note

Since Telenet protocol is does not support file transfer, scp is
used for that purpose.

	Parameters

	
	host – SSH host to which to connect

	username – username for SSH login

	password – password for the SSH connection

Note

In order to user password-based authentication,
sshpass utility must be installed on the
system.

	port – TCP port on which SSH server is listening on the remote device.
Omit to use the default port.

	timeout – Timeout for the connection in seconds. If a connection
cannot be established within this time, an error will be
raised.

	password_prompt – A string with the password prompt used by
sshpass. Set this if your version of sshpass
uses something other than "[sudo] password".

	original_prompt – A regex for the shell prompted presented in the Telenet
connection (the prompt will be reset to a
randomly-generated pattern for the duration of the
connection to reduce the possibility of clashes).
This parameter is ignored for SSH connections.

	
class devlib.host.LocalConnection(keep_password=True, unrooted=False, password=None)

	A connection to the local host allowing it to be treated as a Target.

	Parameters

	
	keep_password – If this is True (the default) user’s password will
be cached in memory after it is first requested.

	unrooted – If set to True, the platform will be assumed to be
unrooted without testing for root. This is useful to avoid
blocking on password request in scripts.

	password – Specify password on connection creation rather than
prompting for it.

	
class devlib.utils.ssh.Gem5Connection(platform, host=None, username=None, password=None, timeout=None, password_prompt=None, original_prompt=None)

	A connection to a gem5 simulation using a local Telnet connection.

Note

Some of the following input parameters are optional and will be ignored during
initialisation. They were kept to keep the analogy with a TelnetConnection
(i.e. host, username, password, port,
password_prompt and original_promp)

	Parameters

	
	host – Host on which the gem5 simulation is running

Note

Even though the input parameter for the host
will be ignored, the gem5 simulation needs to be
on the same host the user is currently on, so if
the host given as input parameter is not the
same as the actual host, a TargetStableError
will be raised to prevent confusion.

	username – Username in the simulated system

	password – No password required in gem5 so does not need to be set

	port – Telnet port to connect to gem5. This does not need to be set
at initialisation as this will either be determined by the
Gem5SimulationPlatform or can be set using the
connect_gem5() method

	timeout – Timeout for the connection in seconds. Gem5 has high
latencies so unless the timeout given by the user via
this input parameter is higher than the default one
(3600 seconds), this input parameter will be ignored.

	password_prompt – A string with password prompt

	original_prompt – A regex for the shell prompt

There are two classes that inherit from Gem5Connection:
AndroidGem5Connection and LinuxGem5Connection.
They inherit almost all methods from the parent class, without altering them.
The only methods discussed below are those that will be overwritten by the
LinuxGem5Connection and AndroidGem5Connection respectively.

	
class devlib.utils.ssh.LinuxGem5Connection

	A connection to a gem5 simulation that emulates a Linux system.

	
_login_to_device(self)

	Login to the gem5 simulated system.

	
class devlib.utils.ssh.AndroidGem5Connection

	A connection to a gem5 simulation that emulates an Android system.

	
_wait_for_boot(self)

	Wait for the gem5 simulated system to have booted and finished the booting animation.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 devlib	

 	
 	
 devlib.collector	

 	
 	
 devlib.derived	

 	
 	
 devlib.derived.energy	

 	
 	
 devlib.derived.fps	

 	
 	
 devlib.exception	

 	
 	
 devlib.host	

 	
 	
 devlib.instrument	

 	
 	
 devlib.instrument.baylibre_acme	

 	
 	
 devlib.module	

 	
 	
 devlib.module.cgroups	

 	
 	
 devlib.module.cpufreq	

 	
 	
 devlib.module.cupidle	

 	
 	
 devlib.module.hwmon	

 	
 	
 devlib.platform	

 	
 	
 devlib.platform.arm	

 	
 	
 devlib.platform.gem5	

 	
 	
 devlib.target	

 	
 	
 devlib.utils.android	

 	
 	
 devlib.utils.ssh	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (devlib.module.hwmon.BootModule method)

 	(devlib.module.hwmon.HardResetModule method)

 	(in module devlib.module.hwmon)

 	
 	__init__() (devlib.collector.CollectorOutputEntry method)

 	_login_to_device() (devlib.utils.ssh.LinuxGem5Connection method)

 	_wait_for_boot() (devlib.utils.ssh.AndroidGem5Connection method)

A

 	
 	active_channels (devlib.instrument.Instrument attribute)

 	AdbConnection (class in devlib.utils.android)

 	
 	add_channel() (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument method)

 	AndroidGem5Connection (class in devlib.utils.ssh)

 	AndroidTarget (class in devlib.target)

B

 	
 	background()

 	(devlib.target.Target method)

 	background_invoke() (devlib.target.Target method)

 	batch_revertable_write_value() (devlib.target.Target method)

 	
 	BaylibreAcmeInstrument (class in devlib.instrument.baylibre_acme)

 	BaylibreAcmeLocalInstrument (class in devlib.instrument.baylibre_acme)

 	BaylibreAcmeNetworkInstrument (class in devlib.instrument.baylibre_acme)

 	BaylibreAcmeXMLInstrument (class in devlib.instrument.baylibre_acme)

 	big_core (devlib.target.Target attribute)

C

 	
 	cancel_running_command()

 	capture_screen() (devlib.target.Target method)

 	check_responsive() (devlib.target.Target method)

 	ChromeOsTarget (class in devlib.target)

 	close()

 	CollectorBase (class in devlib.collector)

 	config (devlib.target.Target attribute)

 	
 	conn (devlib.target.Target attribute)

 	connect() (devlib.target.Target method)

 	connected_as_root (devlib.target.Target attribute)

 	core_clusters (devlib.target.Target attribute)

 	core_cpus() (devlib.target.Target method)

 	core_names (devlib.target.Target attribute)

 	cpuinfo (devlib.target.Target attribute)

D

 	
 	DerivedEnergyMeasurements (class in devlib.derived.energy)

 	DerivedGfxInfoStats (class in devlib.derived.fps)

 	DerivedMeasurements (class in devlib.derived)

 	DerivedMetric (class in devlib.derived)

 	DerivedSurfaceFlingerStats (class in devlib.derived.fps)

 	
 devlib

 	module

 	
 devlib.collector

 	module

 	
 devlib.derived

 	module

 	
 devlib.derived.energy

 	module

 	
 devlib.derived.fps

 	module

 	
 devlib.exception

 	module

 	
 devlib.host

 	module

 	
 devlib.instrument

 	module

 	
 devlib.instrument.baylibre_acme

 	module

 	
 devlib.module

 	module

 	
 	
 devlib.module.cgroups

 	module

 	
 devlib.module.cpufreq

 	module

 	
 devlib.module.cupidle

 	module

 	
 devlib.module.hwmon

 	module

 	
 devlib.platform

 	module

 	
 devlib.platform.arm

 	module

 	
 devlib.platform.gem5

 	module

 	
 devlib.target

 	module

 	
 devlib.utils.android

 	module

 	
 devlib.utils.ssh

 	module

 	disable() (devlib.module.cupidle.target.cpuidle method)

 	disable_all() (devlib.module.cupidle.target.cpuidle method)

 	disconnect() (devlib.target.Target method)

E

 	
 	enable() (devlib.module.cupidle.target.cpuidle method)

 	enable_all() (devlib.module.cupidle.target.cpuidle method)

 	ensure_screen_is_off() (devlib.target.AndroidTarget method)

 	ensure_screen_is_on() (devlib.target.AndroidTarget method)

 	
 	ensure_screen_is_on_and_stays() (devlib.target.AndroidTarget method)

 	execute()

 	(devlib.target.Target method)

 	extract() (devlib.target.Target method)

F

 	
 	file_exists() (devlib.target.Target method)

G

 	
 	Gem5Connection (class in devlib.utils.ssh)

 	Gem5SimulationPlatform (class in devlib.platform.gem5)

 	get_airplane_mode() (devlib.target.AndroidTarget method)

 	get_auto_brightness() (devlib.target.AndroidTarget method)

 	get_auto_rotation() (devlib.target.AndroidTarget method)

 	get_brightness() (devlib.target.AndroidTarget method)

 	get_channels() (devlib.instrument.Instrument method)

 	get_connection() (devlib.target.Target method)

 	get_data() (devlib.collector.CollectorBase method)

 	(devlib.instrument.baylibre_acme.BaylibreAcmeInstrument method)

 	(devlib.instrument.Instrument method)

 	get_driver() (devlib.module.cupidle.target.cpuidle method)

 	get_frequency() (devlib.module.cpufreq.target.cpufreq method)

 	get_governor() (devlib.module.cpufreq.target.cpufreq method)

 	(devlib.module.cupidle.target.cpuidle method)

 	
 	get_governor_tunables() (devlib.module.cpufreq.target.cpufreq method)

 	get_installed() (devlib.target.Target method)

 	get_max_available_frequency() (devlib.module.cpufreq.target.cpufreq method)

 	get_max_frequency() (devlib.module.cpufreq.target.cpufreq method)

 	get_min_available_frequency() (devlib.module.cpufreq.target.cpufreq method)

 	get_min_frequency() (devlib.module.cpufreq.target.cpufreq method)

 	get_pids_of() (devlib.target.Target method)

 	get_raw() (devlib.instrument.Instrument method)

 	get_rotation() (devlib.target.AndroidTarget method)

 	get_state() (devlib.module.cupidle.target.cpuidle method)

 	get_states() (devlib.module.cupidle.target.cpuidle method)

 	get_stay_on_mode() (devlib.target.AndroidTarget method)

 	get_workpath() (devlib.target.Target method)

 	getenv() (devlib.target.Target method)

H

 	
 	homescreen() (devlib.target.AndroidTarget method)

 	
 	hostid (devlib.target.Target attribute)

 	hostname (devlib.target.Target attribute)

I

 	
 	IIOINA226Instrument (class in devlib.instrument.baylibre_acme)

 	init_target_connection() (devlib.platform.gem5.Gem5SimulationPlatform method)

 	install() (devlib.module.hwmon.Module method)

 	(devlib.target.Target method)

 	install_if_needed() (devlib.target.Target method)

 	install_module() (devlib.target.Target method)

 	Instrument (class in devlib.instrument)

 	InstrumentChannel (class in devlib.instrument)

 	integration_time_bus (devlib.instrument.baylibre_acme.IIOINA226Instrument attribute)

 	
 	integration_time_shunt (devlib.instrument.baylibre_acme.IIOINA226Instrument attribute)

 	INTEGRATION_TIMES_AVAILABLE (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument attribute)

 	(devlib.instrument.baylibre_acme.IIOINA226Instrument attribute)

 	invoke() (devlib.target.Target method)

 	is_connected (devlib.target.Target attribute)

 	is_installed() (devlib.target.Target method)

 	is_network_connected() (devlib.target.Target method)

 	is_rooted (devlib.target.Target attribute)

 	is_screen_on() (devlib.target.AndroidTarget method)

K

 	
 	kernel_version (devlib.target.Target attribute)

 	kick_off() (devlib.target.Target method)

 	kill() (devlib.target.Target method)

 	killall() (devlib.target.Target method)

 	
 	kind (devlib.instrument.InstrumentChannel attribute)

 	(devlib.module.hwmon.BootModule attribute)

 	(devlib.module.hwmon.FlashModule attribute)

 	(devlib.module.hwmon.HardResetModule attribute)

L

 	
 	label (devlib.instrument.InstrumentChannel attribute)

 	LinuxGem5Connection (class in devlib.utils.ssh)

 	LinuxTarget (class in devlib.target)

 	list_channels() (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument method)

 	(devlib.instrument.Instrument method)

 	list_directory() (devlib.target.Target method)

 	list_file_systems() (devlib.target.Target method)

 	
 	list_frequencies() (devlib.module.cpufreq.target.cpufreq method)

 	list_governor_tunables() (devlib.module.cpufreq.target.cpufreq method)

 	list_governors() (devlib.module.cpufreq.target.cpufreq method)

 	list_offline_cpus() (devlib.target.Target method)

 	list_online_cpus() (devlib.target.Target method)

 	little_core (devlib.target.Target attribute)

 	LocalConnection (class in devlib.host)

 	LocalLinuxTarget (class in devlib.target)

M

 	
 	makedirs() (devlib.target.Target method)

 	measurement_type (devlib.derived.DerivedMetric attribute)

 	mode (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument attribute)

 	(devlib.instrument.Instrument attribute)

 	model (devlib.target.Target attribute)

 	
 module

 	devlib

 	devlib.collector

 	devlib.derived

 	devlib.derived.energy

 	devlib.derived.fps

 	devlib.exception

 	devlib.host

 	devlib.instrument

 	devlib.instrument.baylibre_acme

 	devlib.module

 	devlib.module.cgroups

 	devlib.module.cpufreq

 	devlib.module.cupidle

 	devlib.module.hwmon

 	devlib.platform

 	devlib.platform.arm

 	devlib.platform.gem5

 	devlib.target

 	devlib.utils.android

 	devlib.utils.ssh

N

 	
 	name (devlib.derived.DerivedMetric attribute)

 	
 	number_of_cpus (devlib.target.Target attribute)

O

 	
 	os_version (devlib.target.Target attribute)

 	oversampling_ratio (devlib.instrument.baylibre_acme.IIOINA226Instrument attribute)

 	
 	OVERSAMPLING_RATIOS_AVAILABLE (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument attribute)

 	(devlib.instrument.baylibre_acme.IIOINA226Instrument attribute)

P

 	
 	path (devlib.collector.CollectorOutputEntry attribute)

 	path_kind (devlib.collector.CollectorOutputEntry attribute)

 	Platform (class in devlib.platform)

 	probe() (devlib.module.hwmon.Module method)

 	probes (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument attribute)

 	process() (devlib.derived.DerivedMeasurements method)

 	(devlib.derived.energy.DerivedEnergyMeasurements method)

 	(devlib.derived.fps.DerivedGfxInfoStats method)

 	(devlib.derived.fps.DerivedSurfaceFlingerStats method)

 	
 	process_raw() (devlib.derived.DerivedMeasurements method)

 	(devlib.derived.fps.DerivedGfxInfoStats method)

 	ps() (devlib.target.Target method)

 	pull()

 	(devlib.target.Target method)

 	push()

 	(devlib.target.Target method)

R

 	
 	read_bool() (devlib.target.Target method)

 	read_int() (devlib.target.Target method)

 	read_tree_values() (devlib.target.Target method)

 	read_tree_values_flat() (devlib.target.Target method)

 	read_value() (devlib.target.Target method)

 	reboot() (devlib.target.Target method)

 	
 	reboot_bootloader() (devlib.target.AndroidTarget method)

 	remove() (devlib.target.Target method)

 	reset() (devlib.collector.CollectorBase method)

 	(devlib.instrument.baylibre_acme.BaylibreAcmeInstrument method)

 	(devlib.instrument.Instrument method)

 	(devlib.target.Target method)

 	revertable_write_value() (devlib.target.Target method)

S

 	
 	sample_rate_hz (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument attribute)

 	(devlib.instrument.baylibre_acme.IIOINA226Instrument attribute)

 	(devlib.instrument.Instrument attribute)

 	set_airplane_mode() (devlib.target.AndroidTarget method)

 	set_auto_brightness() (devlib.target.AndroidTarget method)

 	set_auto_rotation() (devlib.target.AndroidTarget method)

 	set_brightness() (devlib.target.AndroidTarget method)

 	set_frequency() (devlib.module.cpufreq.target.cpufreq method)

 	set_governor() (devlib.module.cpufreq.target.cpufreq method)

 	set_governor_tunables() (devlib.module.cpufreq.target.cpufreq method)

 	set_inverted_rotation() (devlib.target.AndroidTarget method)

 	set_left_rotation() (devlib.target.AndroidTarget method)

 	set_max_frequency() (devlib.module.cpufreq.target.cpufreq method)

 	set_min_frequency() (devlib.module.cpufreq.target.cpufreq method)

 	set_natural_rotation() (devlib.target.AndroidTarget method)

 	set_output() (devlib.collector.CollectorBase method)

 	set_right_rotation() (devlib.target.AndroidTarget method)

 	set_rotation() (devlib.target.AndroidTarget method)

 	
 	set_stay_on_mode() (devlib.target.AndroidTarget method)

 	set_stay_on_never() (devlib.target.AndroidTarget method)

 	set_stay_on_while_powered() (devlib.target.AndroidTarget method)

 	setup() (devlib.collector.Collector method)

 	(devlib.instrument.baylibre_acme.BaylibreAcmeInstrument method)

 	(devlib.instrument.Instrument method)

 	(devlib.platform.gem5.Gem5SimulationPlatform method)

 	(devlib.target.Target method)

 	shunt_resistor (devlib.instrument.baylibre_acme.IIOINA226Instrument attribute)

 	site (devlib.instrument.InstrumentChannel attribute)

 	SshConnection (class in devlib.utils.ssh)

 	start() (devlib.collector.CollectorBase method)

 	(devlib.instrument.baylibre_acme.BaylibreAcmeInstrument method)

 	(devlib.instrument.Instrument method)

 	stop() (devlib.collector.CollectorBase method)

 	(devlib.instrument.baylibre_acme.BaylibreAcmeInstrument method)

 	(devlib.instrument.Instrument method)

 	swipe_to_unlock() (devlib.target.AndroidTarget method)

 	system_id (devlib.target.Target attribute)

T

 	
 	take_measurement() (devlib.instrument.Instrument method)

 	Target (class in devlib.target)

 	teardown() (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument method)

 	(devlib.instrument.Instrument method)

 	
 	TelnetConnection (class in devlib.utils.ssh)

 	tempfile() (devlib.target.Target method)

U

 	
 	uninstall() (devlib.target.Target method)

 	units (devlib.derived.DerivedMetric attribute)

 	(devlib.instrument.InstrumentChannel attribute)

 	
 	update() (devlib.module.hwmon.Bootmodule method)

 	update_from_target() (devlib.platform.gem5.Gem5SimulationPlatform method)

 	user (devlib.target.Target attribute)

V

 	
 	value (devlib.derived.DerivedMetric attribute)

 	
 	VersatileExpressPlatform (class in devlib.platform.arm)

W

 	
 	wait_for_device() (devlib.target.AndroidTarget method)

 	
 	which() (devlib.target.Target method)

 	write_value() (devlib.target.Target method)

 _images/buffer.png
Buffer size: 2500 samples

6000

v
=3
o
o

o
o
o
o

3000

N
=]
o
o

1000

Inter-sample time A [ps]

o

0 1000 2000 3000 4000 5000 6000 7000
Samples

Buffer size: 1000 samples

6000

N v
o =3
o o
o o

Inter-sample time A [ps]

2000
1000
0 0 1000 2000 3000 4000 5000 6000
Samples
Buffer size: 500 samples
6000

v
=3
o
o

o
o
o
o

N
=]
o
o

1000

Inter-sample time A [ps]

o

0 1000 2000 3000 4000 5000
Samples

_images/cape.png
€ 3804d

_images/bottleneck.png
3500.0

3000.0

2500.0

N
S
S
<
o

1500.0

Sampling Frequency [Hz]
)
S
o

500.0

0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Integration Time (Shunt + Bus) [ps]

HEl expected HEl measured

15 16 17 18 19 20

_images/graphviz-afd85fd53ba6a6e94a0e150764e401b5064a9a52.png

_images/ina226_circuit.png
Power Supply
(OV1036V)

vs
(Supply Voltage)
SDA
scL
Power Register
2
Current Register 1°C or SMBus
Compatible
Interface
Voltage Register Alort
A0
Mlert Register Al

GND

_images/graphviz-59bb23140db02e6c59e30a0e333d8735b385bb3d.png
Inputs

Shunt Voltage

Bus Voltage

\

s ac ———————»

INA226

Processing

———————————> Registers

-

12C

» drivers

BeagleBone Black

-

>

110 Daemon

-

110 Interface

_images/graphviz-a6dd2c9ef257c3c9a72f3734876b8d344cf3a4e5.png
IO Interface

Eth./USB

o

110 Daemon

Backend

-

» CAPI

-

>

o Wrapper

Python

-

» devlib -

» User

_images/ina226_functional.png
Shunt Voltage
Channel

Bus Voltage O—2
Channel

(1) Read-only
(2) Read/write

ADC

Power)

Bus Voltage”

Current”)

Calibration®

Shunt Voltage”

o

Data Registers

_images/int_time.png
400

350

Bus Voltage
= - N N w
(%] o w o v o
o o o o o o o

400

350

w
S
S)

N
%
o

150

Bus Voltage

100

50

400

350

300

250

200

150

Bus Voltage

100

50

Integration time: 140 us

099777000 * 2977090
.ol [H ..°.. .Ui.
... 1B
,0 6".. Wt
ot [.. [7Y
oF ’. °? %9 °
o.o. °¢... ..o° 0
! 1] il
0 10 20 30 40 50 60
Time [ms]
Integration time: 332 us
RO 0L Oo.....o..
.0. Pe ' [
° e 0!
o 0. of .o
.. e .. []
{ X1 Pe ot Pe
[Pe [Te
.0. o.. ... 6..6
il i m
0 10 20 30 40 50 60
Time [ms]
Integration time: 1100 pus
P X ? e,
. = [] [] - . . ® [] [] R
® []
. {] {]
'3 ! ? ° ! ! ¢
R * * . * *
o L [] . . ® * * ° o
1 11 11
0 10 20 30 40 50 60

Time [ms]

nav.xhtml

 Table of Contents

 		
 Welcome to devlib documentation

 		
 Overview

 		
 Acquiring a Target

 		
 Target Interface

 		
 One-time Setup

 		
 Command Execution

 		
 File Transfer

 		
 Process Control

 		
 More…

 		
 Super User Privileges

 		
 On-Target Locations

 		
 Exceptions Handling

 		
 Extending devlib

 		
 Modules

 		
 Instruments and Collectors

 		
 Target

 		
 Linux Target

 		
 Local Linux Target

 		
 Android Target

 		
 ChromeOS Target

 		
 Modules

 		
 hotplug

 		
 cpufreq

 		
 cpuidle

 		
 cgroups

 		
 hwmon

 		
 API

 		
 Generic Module API Description

 		
 Common Function Interfaces

 		
 Module Registration

 		
 Instrumentation

 		
 Example

 		
 API

 		
 Instrument

 		
 Instrument Channel

 		
 Measurement Types

 		
 Available Instruments

 		
 Baylibre ACME BeagleBone Black Cape

 		
 Collectors

 		
 Example

 		
 API

 		
 CollectorBase

 		
 CollectorOutputEntry

 		
 Available Collectors

 		
 Derived Measurements

 		
 Example

 		
 API

 		
 Derived Measurements

 		
 Derived Metric

 		
 Available Derived Measurements

 		
 Energy

 		
 FPS / Rendering

 		
 Platform

 		
 Versatile Express

 		
 Gem5 Simulation Platform

 		
 Connection

 		
 Connection Types

_static/minus.png

_static/plus.png

_static/file.png

