
devlib Documentation
Release 1.0.0

ARM Limited

May 24, 2022

CONTENTS

1 Overview 3
1.1 Acquiring a Target . 3
1.2 Target Interface . 4
1.3 Super User Privileges . 6
1.4 On-Target Locations . 6
1.5 Exceptions Handling . 6
1.6 Modules . 7
1.7 Instruments and Collectors . 8

2 Target 9
2.1 Linux Target . 17
2.2 Local Linux Target . 18
2.3 Android Target . 18
2.4 ChromeOS Target . 20

3 Modules 21
3.1 hotplug . 21
3.2 cpufreq . 21
3.3 cpuidle . 23
3.4 cgroups . 23
3.5 hwmon . 23
3.6 API . 23

4 Instrumentation 27
4.1 Example . 27
4.2 API . 28
4.3 Available Instruments . 31

5 Collectors 43
5.1 Example . 43
5.2 API . 44
5.3 Available Collectors . 45

6 Derived Measurements 47
6.1 Example . 47
6.2 API . 47
6.3 Available Derived Measurements . 48

7 Platform 51
7.1 Versatile Express . 51
7.2 Gem5 Simulation Platform . 53

i

8 Connection 55
8.1 Connection Types . 56

9 Indices and tables 61

Python Module Index 63

Index 65

ii

devlib Documentation, Release 1.0.0

devlib provides an interface for interacting with remote targets, such as development boards, mobile devices, etc. It
also provides means of collecting various measurements and traces from such targets.

Contents:

CONTENTS 1

devlib Documentation, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

OVERVIEW

A Target instance serves as the main interface to the target device. There are currently four target interfaces:

• LinuxTarget for interacting with Linux devices over SSH.

• AndroidTarget for interacting with Android devices over adb.

• ChromeOsTarget: for interacting with ChromeOS devices over SSH, and their Android containers over adb.

• LocalLinuxTarget: for interacting with the local Linux host.

They all work in more-or-less the same way, with the major difference being in how connection settings are specified;
though there may also be a few APIs specific to a particular target type (e.g. AndroidTarget exposes methods for
working with logcat).

1.1 Acquiring a Target

To create an interface to your device, you just need to instantiate one of the Target derivatives listed above, and pass it
the right connection_settings. Code snippet below gives a typical example of instantiating each of the three target
types.

from devlib import LocalLinuxTarget, LinuxTarget, AndroidTarget

Local machine requires no special connection settings.
t1 = LocalLinuxTarget()

For a Linux device, you will need to provide the normal SSH credentials.
Both password-based, and key-based authentication is supported (password
authentication requires sshpass to be installed on your host machine).'
t2 = LinuxTarget(connection_settings={'host': '192.168.0.5',

'username': 'root',
'password': 'sekrit',
or
'keyfile': '/home/me/.ssh/id_rsa'})

ChromeOsTarget connection is performed in the same way as LinuxTarget

For an Android target, you will need to pass the device name as reported
by "adb devices". If there is only one device visible to adb, you can omit
this setting and instantiate similar to a local target.
t3 = AndroidTarget(connection_settings={'device': '0123456789abcde'})

Instantiating a target may take a second or two as the remote device will be queried to initialize Target’s internal
state. If you would like to create a Target instance but not immediately connect to the remote device, you can pass

3

devlib Documentation, Release 1.0.0

connect=False parameter. If you do that, you would have to then explicitly call t.connect() before you can interact
with the device.

There are a few additional parameters you can pass in instantiation besides connection_settings, but they are
usually unnecessary. Please see Target API documentation for more details.

1.2 Target Interface

This is a quick overview of the basic interface to the device. See TargetAPI documentation for the full list of supported
methods and more detailed documentation.

1.2.1 One-time Setup

from devlib import LocalLinuxTarget
t = LocalLinuxTarget()

t.setup()

This sets up the target for devlib interaction. This includes creating working directories, deploying busybox, etc. It’s
usually enough to do this once for a new device, as the changes this makes will persist across reboots. However, there
is no issue with calling this multiple times, so, to be on the safe side, it’s a good idea to call this once at the beginning
of your scripts.

1.2.2 Command Execution

There are several ways to execute a command on the target. In each case, an instance of a subclass of TargetError
will be raised if something goes wrong. When a transient error is encountered such as the loss of the network connec-
tivity, it will raise a TargetTransientError. When the command fails, it will raise a TargetStableError unless
the will_succeed=True parameter is specified, in which case a TargetTransientError will be raised since it is
assumed that the command cannot fail unless there is an environment issue. In each case, it is also possible to specify
as_root=True if the specified command should be executed as root.

from devlib import LocalLinuxTarget
t = LocalLinuxTarget()

Execute a command
output = t.execute('echo $PWD')

Execute command via a subprocess and return the corresponding Popen object.
This will block current connection to the device until the command
completes.
p = t.background('echo $PWD')
output, error = p.communicate()

Run the command in the background on the device and return immediately.
This will not block the connection, allowing to immediately execute another
command.
t.kick_off('echo $PWD')

This is used to invoke an executable binary on the device. This allows some
(continues on next page)

4 Chapter 1. Overview

devlib Documentation, Release 1.0.0

(continued from previous page)

finer-grained control over the invocation, such as specifying the directory
in which the executable will run; however you're limited to a single binary
and cannot construct complex commands (e.g. this does not allow chaining or
piping several commands together).
output = t.invoke('echo', args=['$PWD'], in_directory='/')

1.2.3 File Transfer

from devlib import LocalLinuxTarget
t = LocalLinuxTarget()

"push" a file from the local machine onto the target device.
t.push('/path/to/local/file.txt', '/path/to/target/file.txt')

"pull" a file from the target device into a location on the local machine
t.pull('/path/to/target/file.txt', '/path/to/local/file.txt')

Install the specified binary on the target. This will deploy the file and
ensure it's executable. This will *not* guarantee that the binary will be
in PATH. Instead the path to the binary will be returned; this should be
used to call the binary henceforth.
target_bin = t.install('/path/to/local/bin.exe')
Example invocation:
output = t.execute('{} --some-option'.format(target_bin))

The usual access permission constraints on the user account (both on the target and the host) apply.

1.2.4 Process Control

import signal
from devlib import LocalLinuxTarget
t = LocalLinuxTarget()

return PIDs of all running instances of a process
pids = t.get_pids_of('sshd')

kill a running process. This works the same ways as the kill command, so
SIGTERM will be used by default.
t.kill(666, signal=signal.SIGKILL)

kill all running instances of a process.
t.killall('badexe', signal=signal.SIGKILL)

List processes running on the target. This returns a list of parsed
PsEntry records.
entries = t.ps()
e.g. print virtual memory sizes of all running sshd processes:
print(', '.join(str(e.vsize) for e in entries if e.name == 'sshd'))

1.2. Target Interface 5

devlib Documentation, Release 1.0.0

1.2.5 More. . .

As mentioned previously, the above is not intended to be exhaustive documentation of the Target interface. Please
refer to the API documentation for the full list of attributes and methods and their parameters.

1.3 Super User Privileges

It is not necessary for the account logged in on the target to have super user privileges, however the functionality will
obviously be diminished, if that is not the case. devlib will determine if the logged in user has root privileges and the
correct way to invoke it. You should avoid including “sudo” directly in your commands, instead, specify as_root=True
where needed. This will make your scripts portable across multiple devices and OS’s.

1.4 On-Target Locations

File system layouts vary wildly between devices and operating systems. Hard-coding absolute paths in your scripts will
mean there is a good chance they will break if run on a different device. To help with this, devlib defines a couple of
“standard” locations and a means of working with them.

working_directory This is a directory on the target readable and writable by the account used to log in. This should
generally be used for all output generated by your script on the device and as the destination for all host-to-target
file transfers. It may or may not permit execution so executables should not be run directly from here.

executables_directory This directory allows execution. This will be used by install().

from devlib import LocalLinuxTarget
t = LocalLinuxTarget()

t.path is equivalent to Python standard library's os.path, and should be
used in the same way. This insures that your scripts are portable across
both target and host OS variations. e.g.
on_target_path = t.path.join(t.working_directory, 'assets.tar.gz')
t.push('/local/path/to/assets.tar.gz', on_target_path)

Since working_directory is a common base path for on-target locations,
there a short-hand for the above:
t.push('/local/path/to/assets.tar.gz', t.get_workpath('assets.tar.gz'))

1.5 Exceptions Handling

Devlib custom exceptions all derive from DevlibError. Some exceptions are further categorized into
DevlibTransientError and DevlibStableError. Transient errors are raised when there is an issue in the en-
vironment that can happen randomly such as the loss of network connectivity. Even a properly configured environment
can be subject to such transient errors. Stable errors are related to either programming errors or configuration issues in
the broad sense. This distinction allows quicker analysis of failures, since most transient errors can be ignored unless
they happen at an alarming rate. DevlibTransientError usually propagates up to the caller of devlib APIs, since it
means that an operation could not complete. Retrying it or bailing out is therefore a responsability of the caller.

The hierarchy is as follows:

• DevlibError

6 Chapter 1. Overview

devlib Documentation, Release 1.0.0

– WorkerThreadError

– HostError

– TargetError

∗ TargetStableError

∗ TargetTransientError

∗ TargetNotRespondingError

– DevlibStableError

∗ TargetStableError

– DevlibTransientError

∗ TimeoutError

∗ TargetTransientError

∗ TargetNotRespondingError

1.5.1 Extending devlib

New devlib code is likely to face the decision of raising a transient or stable error. When it is unclear which one should
be used, it can generally be assumed that the system is properly configured and therefore, the error is linked to an
environment transient failure. If a function is somehow probing a property of a system in the broad meaning, it can use
a stable error as a way to signal a non-expected value of that property even if it can also face transient errors. An example
are the various execute() methods where the command can generally not be assumed to be supposed to succeed by
devlib. Their failure does not usually come from an environment random issue, but for example a permission error.
The user can use such expected failure to probe the system. Another example is boot completion detection on Android:
boot failure cannot be distinguished from a timeout which is too small. A non-transient exception is still raised, since
assuming the timeout comes from a network failure would either make the function useless, or force the calling code
to handle a transient exception under normal operation. The calling code would potentially wrongly catch transient
exceptions raised by other functions as well and attach a wrong meaning to them.

1.6 Modules

Additional functionality is exposed via modules. Modules are initialized as attributes of a target instance. By default,
hotplug, cpufreq, cpuidle, cgroups and hwmonwill attempt to load on target; additional modules may be specified
when creating a Target instance.

A module will probe the target for support before attempting to load. So if the underlying platform does not support
particular functionality (e.g. the kernel on target device was built without hotplug support). To check whether a module
has been successfully installed on a target, you can use has() method, e.g.

from devlib import LocalLinuxTarget
t = LocalLinuxTarget()

cpu0_freqs = []
if t.has('cpufreq'):

cpu0_freqs = t.cpufreq.list_frequencies(0)

Please see the modules documentation for more detail.

1.6. Modules 7

devlib Documentation, Release 1.0.0

1.7 Instruments and Collectors

You can retrieve multiple types of data from a target. There are two categories of classes that allow for this:

• An Instrumentwhich may be used to collect measurements (such as power) from targets that support it. Please
see the instruments documentation for more details.

• A Collectormay be used to collect arbitary data from a Target varying from screenshots to trace data. Please
see the collectors documentation for more details.

An example workflow using FTraceCollector is as follows:

from devlib import AndroidTarget, FtraceCollector
t = LocalLinuxTarget()

Initialize a collector specifying the events you want to collect and
the buffer size to be used.
trace = FtraceCollector(t, events=['power*'], buffer_size=40000)

As a context manager, clear ftrace buffer using trace.reset(),
start trace collection using trace.start(), then stop it Using
trace.stop(). Using a context manager brings the guarantee that
tracing will stop even if an exception occurs, including
KeyboardInterrupt (ctr-C) and SystemExit (sys.exit)
with trace:
Perform the operations you want to trace here...
import time; time.sleep(5)

extract the trace file from the target into a local file
trace.get_data('/tmp/trace.bin')

View trace file using Kernelshark (must be installed on the host).
trace.view('/tmp/trace.bin')

Convert binary trace into text format. This would normally be done
automatically during get_data(), unless autoreport is set to False during
instantiation of the trace collector.
trace.report('/tmp/trace.bin', '/tmp/trace.txt')

8 Chapter 1. Overview

CHAPTER

TWO

TARGET

class devlib.target.Target(connection_settings=None, platform=None, working_directory=None,
executables_directory=None, connect=True, modules=None,
load_default_modules=True, shell_prompt=DEFAULT_SHELL_PROMPT,
conn_cls=None)

Target is the primary interface to the remote device. All interactions with the device are performed via a Target
instance, either directly, or via its modules or a wrapper interface (such as an Instrument).

Parameters

• connection_settings – A dict that specifies how to connect to the remote device. Its
contents depend on the specific Target type (used see Connection Types).

• platform – A Target defines interactions at Operating System level. A Platform de-
scribes the underlying hardware (such as CPUs available). If a Platform instance is not
specified on Target creation, one will be created automatically and it will dynamically probe
the device to discover as much about the underlying hardware as it can. See also Platform.

• working_directory – This is primary location for on-target file system interactions per-
formed by devlib. This location must be readable and writable directly (i.e. without sudo)
by the connection’s user account. It may or may not allow execution. This location will be
created, if necessary, during setup().

If not explicitly specified, this will be set to a default value depending on the type of Target

• executables_directory – This is the location to which devlib will install executable
binaries (either during setup() or via an explicit install() call). This location must
support execution (obviously). It should also be possible to write to this location, possibly
with elevated privileges (i.e. on a rooted Linux target, it should be possible to write here
with sudo, but not necessarily directly by the connection’s account). This location will be
created, if necessary, during setup().

This location does not need to be same as the system’s executables location. In fact, to
prevent devlib from overwriting system’s defaults, it better if this is a separate location, if
possible.

If not explicitly specified, this will be set to a default value depending on the type of Target

• connect – Specifies whether a connections should be established to the target. If this is set
to False, then connect()must be explicitly called later on before the Target instance can
be used.

• modules – a list of additional modules to be installed. Some modules will try to install
by default (if supported by the underlying target). Current default modules are hotplug,
cpufreq, cpuidle, cgroups, and hwmon (See Modules).

See modules documentation for more detail.

9

devlib Documentation, Release 1.0.0

• load_default_modules – If set to False, default modules listed above will not attempt
to load. This may be used to either speed up target instantiation (probing for initializing
modules takes a bit of time) or if there is an issue with one of the modules on a particular
device (the rest of the modules will then have to be explicitly specified in the modules).

• shell_prompt – This is a regular expression that matches the shell prompted on the tar-
get. This may be used by some modules that establish auxiliary connections to a target over
UART.

• conn_cls – This is the type of connection that will be used to communicate with the device.

Target.core_names
This is a list containing names of CPU cores on the target, in the order in which they are index by the kernel.
This is obtained via the underlying Platform .

Target.core_clusters
Some devices feature heterogeneous core configurations (such as ARM big.LITTLE). This is a list that maps
CPUs onto underlying clusters. (Usually, but not always, clusters correspond to groups of CPUs with the same
name). This is obtained via the underlying Platform .

Target.big_core
This is the name of the cores that are the “big”s in an ARM big.LITTLE configuration. This is obtained via the
underlying Platform .

Target.little_core
This is the name of the cores that are the “little”s in an ARM big.LITTLE configuration. This is obtained via the
underlying Platform .

Target.is_connected
A boolean value that indicates whether an active connection exists to the target device.

Target.connected_as_root
A boolean value that indicate whether the account that was used to connect to the target device is “root” (uid=0).

Target.is_rooted
A boolean value that indicates whether the connected user has super user privileges on the devices (either is root,
or is a sudoer).

Target.kernel_version
The version of the kernel on the target device. This returns a KernelVersion instance that has separate version
and release fields.

Target.os_version
This is a dict that contains a mapping of OS version elements to their values. This mapping is OS-specific.

Target.hostname
A string containing the hostname of the target.

Target.hostid
A numerical id used to represent the identity of the target.

Note: Currently on 64-bit PowerPC devices this id will always be 0. This is due to the included busybox binary
being linked with musl.

Target.system_id
A unique identifier for the system running on the target. This identifier is intended to be unique for the combi-
nation of hardware, kernel, and file system.

Target.model
The model name/number of the target device.

10 Chapter 2. Target

devlib Documentation, Release 1.0.0

Target.cpuinfo
This is a Cpuinfo instance which contains parsed contents of /proc/cpuinfo.

Target.number_of_cpus
The total number of CPU cores on the target device.

Target.config
A KernelConfig instance that contains parsed kernel config from the target device. This may be None if kernel
config could not be extracted.

Target.user
The name of the user logged in on the target device.

Target.conn
The underlying connection object. This will be None if an active connection does not exist (e.g. if
connect=False as passed on initialization and connect() has not been called).

Note: a Target will automatically create a connection per thread. This will always be set to the connection for
the current thread.

Target.connect([timeout])
Establish a connection to the target. It is usually not necessary to call this explicitly, as a connection gets auto-
matically established on instantiation.

Target.disconnect()
Disconnect from target, closing all active connections to it.

Target.get_connection([timeout])
Get an additional connection to the target. A connection can be used to execute one blocking command at time.
This will return a connection that can be used to interact with a target in parallel while a blocking operation is
being executed.

This should not be used to establish an initial connection; use connect() instead.

Note: Target will automatically create a connection per thread, so you don’t normally need to use this explicitly
in threaded code. This is generally useful if you want to perform a blocking operation (e.g. using background())
while at the same time doing something else in the same host-side thread.

Target.setup([executables])
This will perform an initial one-time set up of a device for devlib interaction. This involves deployment of tools
relied on the Target, creation of working locations on the device, etc.

Usually, it is enough to call this method once per new device, as its effects will persist across reboots. However,
it is safe to call this method multiple times. It may therefore be a good practice to always call it once at the
beginning of a script to ensure that subsequent interactions will succeed.

Optionally, this may also be used to deploy additional tools to the device by specifying a list of binaries to install
in the executables parameter.

Target.reboot([hard[, connect[, timeout]]])
Reboot the target device.

Parameters

• hard – A boolean value. If True a hard reset will be used instead of the usual soft reset.
Hard reset must be supported (usually via a module) for this to work. Defaults to False.

11

devlib Documentation, Release 1.0.0

• connect – A boolean value. If True, a connection will be automatically established to the
target after reboot. Defaults to True.

• timeout – If set, this will be used by various (platform-specific) operations during reboot
process to detect if the reboot has failed and the device has hung.

Target.push(source, dest[, as_root, timeout, globbing])
Transfer a file from the host machine to the target device.

If transfer polling is supported (ADB connections and SSH connections), poll_transfers is set in the con-
nection, and a timeout is not specified, the push will be polled for activity. Inactive transfers will be cancelled.
(See Connection Types for more information on polling).

Parameters

• source – path on the host

• dest – path on the target

• as_root – whether root is required. Defaults to false.

• timeout – timeout (in seconds) for the transfer; if the transfer does not complete within this
period, an exception will be raised. Leave unset to utilise transfer polling if enabled.

• globbing – If True, the source is interpreted as a globbing pattern instead of being take
as-is. If the pattern has multiple matches, dest must be a folder (or will be created as such
if it does not exists yet).

Target.pull(source, dest[, as_root, timeout, globbing, via_temp])
Transfer a file from the target device to the host machine.

If transfer polling is supported (ADB connections and SSH connections), poll_transfers is set in the con-
nection, and a timeout is not specified, the pull will be polled for activity. Inactive transfers will be cancelled.
(See Connection Types for more information on polling).

Parameters

• source – path on the target

• dest – path on the host

• as_root – whether root is required. Defaults to false.

• timeout – timeout (in seconds) for the transfer; if the transfer does not complete within this
period, an exception will be raised.

• globbing – If True, the source is interpreted as a globbing pattern instead of being take
as-is. If the pattern has multiple matches, dest must be a folder (or will be created as such
if it does not exists yet).

• via_temp – If True, copy the file first to a temporary location on the target, and then pull it.
This can avoid issues some filesystems, notably paramiko + OpenSSH combination having
performance issues when pulling big files from sysfs.

Target.execute(command[, timeout[, check_exit_code[, as_root[, strip_colors[, will_succeed[, force_locale]]
]]]])

Execute the specified command on the target device and return its output.

Parameters

• command – The command to be executed.

• timeout – Timeout (in seconds) for the execution of the command. If specified, an exception
will be raised if execution does not complete with the specified period.

12 Chapter 2. Target

devlib Documentation, Release 1.0.0

• check_exit_code – If True (the default) the exit code (on target) from execution of the
command will be checked, and an exception will be raised if it is not 0.

• as_root – The command will be executed as root. This will fail on unrooted targets.

• strip_colours – The command output will have colour encodings and most ANSI escape
sequences striped out before returning.

• will_succeed – The command is assumed to always succeed, unless there is an issue in the
environment like the loss of network connectivity. That will make the method always raise
an instance of a subclass of DevlibTransientError when the command fails, instead of
a DevlibStableError.

• force_locale – Prepend LC_ALL=<force_locale> in front of the command to get pre-
dictable output that can be more safely parsed. If None, no locale is prepended.

Target.background(command [, stdout [, stderr [, as_root, [, force_locale [, timeout]]])
Execute the command on the target, invoking it via subprocess on the host. This will return subprocess.Popen
instance for the command.

Parameters

• command – The command to be executed.

• stdout – By default, standard output will be piped from the subprocess; this may be used
to redirect it to an alternative file handle.

• stderr – By default, standard error will be piped from the subprocess; this may be used to
redirect it to an alternative file handle.

• as_root – The command will be executed as root. This will fail on unrooted targets.

• force_locale – Prepend LC_ALL=<force_locale> in front of the command to get pre-
dictable output that can be more safely parsed. If None, no locale is prepended.

• timeout – Timeout (in seconds) for the execution of the command. When the timeout ex-
pires, BackgroundCommand.cancel() is executed to terminate the command.

Note: This will block the connection until the command completes.

Target.invoke(binary[, args[, in_directory[, on_cpus[, as_root[, timeout]]]]])
Execute the specified binary on target (must already be installed) under the specified conditions and return the
output.

Parameters

• binary – binary to execute. Must be present and executable on the device.

• args – arguments to be passed to the binary. The can be either a list or a string.

• in_directory – execute the binary in the specified directory. This must be an absolute
path.

• on_cpus – taskset the binary to these CPUs. This may be a single int (in which case, it
will be interpreted as the mask), a list of ints, in which case this will be interpreted as the
list of cpus, or string, which will be interpreted as a comma-separated list of cpu ranges, e.g.
"0,4-7".

• as_root – Specify whether the command should be run as root

• timeout – If this is specified and invocation does not terminate within this number of sec-
onds, an exception will be raised.

13

devlib Documentation, Release 1.0.0

Target.background_invoke(binary[, args[, in_directory[, on_cpus[, as_root]]]])
Execute the specified binary on target (must already be installed) as a background task, under the specified
conditions and return the subprocess.Popen instance for the command.

Parameters

• binary – binary to execute. Must be present and executable on the device.

• args – arguments to be passed to the binary. The can be either a list or a string.

• in_directory – execute the binary in the specified directory. This must be an absolute
path.

• on_cpus – taskset the binary to these CPUs. This may be a single int (in which case, it
will be interpreted as the mask), a list of ints, in which case this will be interpreted as the
list of cpus, or string, which will be interpreted as a comma-separated list of cpu ranges, e.g.
"0,4-7".

• as_root – Specify whether the command should be run as root

Target.kick_off(command[, as_root])
Kick off the specified command on the target and return immediately. Unlike background() this will not block
the connection; on the other hand, there is not way to know when the command finishes (apart from calling ps())
or to get its output (unless its redirected into a file that can be pulled later as part of the command).

Parameters

• command – The command to be executed.

• as_root – The command will be executed as root. This will fail on unrooted targets.

Target.read_value(path[, kind])
Read the value from the specified path. This is primarily intended for sysfs/procfs/debugfs etc.

Parameters

• path – file to read

• kind – Optionally, read value will be converted into the specified kind (which should be a
callable that takes exactly one parameter).

Target.read_int(self, path)
Equivalent to Target.read_value(path, kind=devlib.utils.types.integer)

Target.read_bool(self, path)
Equivalent to Target.read_value(path, kind=devlib.utils.types.boolean)

Target.write_value(path, value[, verify])
Write the value to the specified path on the target. This is primarily intended for sysfs/procfs/debugfs etc.

Parameters

• path – file to write into

• value – value to be written

• verify – If True (the default) the value will be read back after it is written to make sure it
has been written successfully. This due to some sysfs entries silently failing to set the written
value without returning an error code.

Target.revertable_write_value(path, value[, verify])
Same as Target.write_value(), but as a context manager that will write back the previous value on exit.

14 Chapter 2. Target

devlib Documentation, Release 1.0.0

Target.batch_revertable_write_value(kwargs_list)
Calls Target.revertable_write_value() with all the keyword arguments dictionary given in the list. This
is a convenience method to update multiple files at once, leaving them in their original state on exit. If one write
fails, all the already-performed writes will be reverted as well.

Target.read_tree_values(path, depth=1, dictcls=dict[, tar[, decode_unicode[, strip_null_char]]])
Read values of all sysfs (or similar) file nodes under path, traversing up to the maximum depth depth.

Returns a nested structure of dict-like objects (dicts by default) that follows the structure of the scanned sub-
directory tree. The top-level entry has a single item who’s key is path. If path points to a single file, the value
of the entry is the value ready from that file node. Otherwise, the value is a dict-line object with a key for every
entry under path mapping onto its value or further dict-like objects as appropriate.

Although the default behaviour should suit most users, it is possible to encounter issues when reading binary
files, or files with colons in their name for example. In such cases, the tar parameter can be set to force a full
archive of the tree using tar, hence providing a more robust behaviour. This can, however, slow down the read
process significantly.

Parameters

• path – sysfs path to scan

• depth – maximum depth to descend

• dictcls – a dict-like type to be used for each level of the hierarchy.

• tar – the files will be read using tar rather than grep

• decode_unicode – decode the content of tar-ed files as utf-8

• strip_null_char – remove null chars from utf-8 decoded files

Target.read_tree_values_flat(path, depth=1)
Read values of all sysfs (or similar) file nodes under path, traversing up to the maximum depth depth.

Returns a dict mapping paths of file nodes to corresponding values.

Parameters

• path – sysfs path to scan

• depth – maximum depth to descend

Target.reset()
Soft reset the target. Typically, this means executing reboot on the target.

Target.check_responsive()
Returns True if the target appears to be responsive and False otherwise.

Target.kill(pid[, signal[, as_root]])
Kill a process on the target.

Parameters

• pid – PID of the process to be killed.

• signal – Signal to be used to kill the process. Defaults to signal.SIGTERM.

• as_root – If set to True, kill will be issued as root. This will fail on unrooted targets.

Target.killall(name[, signal[, as_root]])
Kill all processes with the specified name on the target. Other parameters are the same as for kill().

Target.get_pids_of(name)
Return a list of PIDs of all running instances of the specified process.

15

devlib Documentation, Release 1.0.0

Target.ps()
Return a list of PsEntry instances for all running processes on the system.

Target.makedirs(self, path)
Create a directory at the given path and all its ancestors if needed.

Target.file_exists(self, filepath)
Returns True if the specified path exists on the target and False otherwise.

Target.list_file_systems()
Lists file systems mounted on the target. Returns a list of FstabEntrys.

Target.list_directory(path[, as_root])
List (optionally, as root) the contents of the specified directory. Returns a list of strings.

Target.get_workpath(self, path)
Convert the specified path to an absolute path relative to working_directory on the target. This is a shortcut
for t.path.join(t.working_directory, path)

Target.tempfile([prefix[, suffix]])
Get a path to a temporary file (optionally, with the specified prefix and/or suffix) on the target.

Target.remove(path[, as_root])
Delete the specified path on the target. Will work on files and directories.

Target.core_cpus(core)
Return a list of numeric cpu IDs corresponding to the specified core name.

Target.list_online_cpus([core])
Return a list of numeric cpu IDs for all online CPUs (optionally, only for CPUs corresponding to the specified
core).

Target.list_offline_cpus([core])
Return a list of numeric cpu IDs for all offline CPUs (optionally, only for CPUs corresponding to the specified
core).

Target.getenv(variable)
Return the value of the specified environment variable on the device

Target.capture_screen(filepath)
Take a screenshot on the device and save it to the specified file on the host. This may not be supported by the
target. You can optionally insert a {ts} tag into the file name, in which case it will be substituted with on-target
timestamp of the screen shot in ISO8601 format.

Target.install(filepath[, timeout[, with_name]])
Install an executable on the device.

Parameters

• filepath – path to the executable on the host

• timeout – Optional timeout (in seconds) for the installation

• with_name – This may be used to rename the executable on the target

Target.install_if_needed(host_path, search_system_binaries=True)
Check to see if the binary is already installed on the device and if not, install it.

Parameters

• host_path – path to the executable on the host

• search_system_binaries – Specify whether to search the devices PATH when checking
to see if the executable is installed, otherwise only check user installed binaries.

16 Chapter 2. Target

devlib Documentation, Release 1.0.0

Target.uninstall(name)
Uninstall the specified executable from the target

Target.get_installed(name)
Return the full installation path on the target for the specified executable, or None if the executable is not installed.

Target.which(name)
Alias for get_installed()

Target.is_installed(name)
Returns True if an executable with the specified name is installed on the target and False other wise.

Target.extract(path, dest=None)
Extracts the specified archive/file and returns the path to the extracted contents. The extraction method is deter-
mined based on the file extension. zip, tar, gzip, and bzip2 are supported.

Parameters dest –

Specified an on-target destination directory (which must exist) for the extracted contents.

Returns the path to the extracted contents. In case of files (gzip and bzip2), the path to the
decompressed file is returned; for archives, the path to the directory with the archive’s contents
is returned.

Target.is_network_connected()
Checks for internet connectivity on the device. This doesn’t actually guarantee that the internet connection is
“working” (which is rather nebulous), it’s intended just for failing early when definitively _not_ connected to the
internet.

Returns True if internet seems available, False otherwise.

Target.install_module(mod, **params)

Parameters

• mod – The module name or object to be installed to the target.

• params – Keyword arguments used to instantiate the module.

Installs an additional module to the target after the initial setup has been performed.

2.1 Linux Target

class devlib.target.LinuxTarget(connection_settings=None, platform=None, working_directory=None,
executables_directory=None, connect=True, modules=None,
load_default_modules=True, shell_prompt=DEFAULT_SHELL_PROMPT,
conn_cls=SshConnection, is_container=False)

LinuxTarget is a subclass of Target with customisations specific to a device running linux.

2.1. Linux Target 17

devlib Documentation, Release 1.0.0

2.2 Local Linux Target

class devlib.target.LocalLinuxTarget(connection_settings=None, platform=None,
working_directory=None, executables_directory=None,
connect=True, modules=None, load_default_modules=True,
shell_prompt=DEFAULT_SHELL_PROMPT,
conn_cls=SshConnection, is_container=False)

LocalLinuxTarget is a subclass of LinuxTarget with customisations specific to using the host machine run-
ning linux as the target.

2.3 Android Target

class devlib.target.AndroidTarget(connection_settings=None, platform=None, working_directory=None,
executables_directory=None, connect=True, modules=None,
load_default_modules=True,
shell_prompt=DEFAULT_SHELL_PROMPT,
conn_cls=AdbConnection, package_data_directory='/data/data')

AndroidTarget is a subclass of Target with additional features specific to a device running Android.

Parameters package_data_directory – This is the location of the data stored for installed An-
droid packages on the device.

AndroidTarget.set_rotation(rotation)
Specify an integer representing the desired screen rotation with the following mappings: Natural: 0, Rotated
Left: 1, Inverted : 2 and Rotated Right : 3.

AndroidTarget.get_rotation(rotation)
Returns an integer value representing the orientation of the devices screen. 0 : Natural, 1 : Rotated Left, 2 :
Inverted and 3 : Rotated Right.

AndroidTarget.set_natural_rotation()
Sets the screen orientation of the device to its natural (0 degrees) orientation.

AndroidTarget.set_left_rotation()
Sets the screen orientation of the device to 90 degrees.

AndroidTarget.set_inverted_rotation()
Sets the screen orientation of the device to its inverted (180 degrees) orientation.

AndroidTarget.set_right_rotation()
Sets the screen orientation of the device to 270 degrees.

AndroidTarget.set_auto_rotation(autorotate)
Specify a boolean value for whether the devices auto-rotation should be enabled.

AndroidTarget.get_auto_rotation()
Returns True if the targets auto rotation is currently enabled and False otherwise.

AndroidTarget.set_airplane_mode(mode)
Specify a boolean value for whether the device should be in airplane mode.

Note: Requires the device to be rooted if the device is running Android 7+.

AndroidTarget.get_airplane_mode()
Returns True if the target is currently in airplane mode and False otherwise.

18 Chapter 2. Target

devlib Documentation, Release 1.0.0

AndroidTarget.set_brightness(value)
Sets the devices screen brightness to a specified integer between 0 and 255.

AndroidTarget.get_brightness()
Returns an integer between 0 and 255 representing the devices current screen brightness.

AndroidTarget.set_auto_brightness(auto_brightness)
Specify a boolean value for whether the devices auto brightness should be enabled.

AndroidTarget.get_auto_brightness()
Returns True if the targets auto brightness is currently enabled and False otherwise.

AndroidTarget.set_stay_on_never()
Sets the stay-on mode to 0, where the screen will turn off as standard after the timeout.

AndroidTarget.set_stay_on_while_powered()
Sets the stay-on mode to 7, where the screen will stay on while the device is charging

AndroidTarget.set_stay_on_mode(mode)
Sets the stay-on mode to the specified number between 0 and 7 (inclusive).

AndroidTarget.get_stay_on_mode()
Returns an integer between 0 and 7 representing the current stay-on mode of the device.

AndroidTarget.ensure_screen_is_off(verify=True)
Checks if the devices screen is on and if so turns it off. If verify is set to True then a TargetStableError
will be raise if the display cannot be turned off. E.g. if always on mode is enabled.

AndroidTarget.ensure_screen_is_on(verify=True)
Checks if the devices screen is off and if so turns it on. If verify is set to True then a TargetStableError
will be raise if the display cannot be turned on.

AndroidTarget.ensure_screen_is_on_and_stays(verify=True, mode=7)
Calls AndroidTarget.ensure_screen_is_on(verify) then additionally sets the screen stay on mode to
mode.

AndroidTarget.is_screen_on()
Returns True if the targets screen is currently on and False otherwise. If the display is in a “Doze” mode or
similar always on state, this will return True.

AndroidTarget.wait_for_device(timeout=30)
Returns when the devices becomes available withing the given timeout otherwise returns a TimeoutError.

AndroidTarget.reboot_bootloader(timeout=30)
Attempts to reboot the target into it’s bootloader.

AndroidTarget.homescreen()
Returns the device to its home screen.

AndroidTarget.swipe_to_unlock(direction='diagonal')
Performs a swipe input on the device to try and unlock the device. A direction of "horizontal", "vertical"
or "diagonal" can be supplied to specify in which direction the swipe should be performed. By default
"diagonal" will be used to try and support the majority of newer devices.

2.3. Android Target 19

devlib Documentation, Release 1.0.0

2.4 ChromeOS Target

class devlib.target.ChromeOsTarget(connection_settings=None, platform=None, working_directory=None,
executables_directory=None, android_working_directory=None,
android_executables_directory=None, connect=True, modules=None,
load_default_modules=True,
shell_prompt=DEFAULT_SHELL_PROMPT,
package_data_directory='/data/data')

ChromeOsTarget is a subclass of LinuxTarget with additional features specific to a device running ChromeOS
for example, if supported, its own android container which can be accessed via the android_container at-
tribute. When making calls to or accessing properties and attributes of the ChromeOS target, by default they
will be applied to Linux target as this is where the majority of device configuration will be performed and if not
available, will fall back to using the android container if available. This means that all the available methods from
LinuxTarget and AndroidTarget are available for ChromeOsTarget if the device supports android otherwise
only the LinuxTarget methods will be available.

Parameters

• working_directory – This is the location of the working directory to be used for the
Linux target container. If not specified will default to "/mnt/stateful_partition/
devlib-target".

• android_working_directory – This is the location of the working directory to be used
for the android container. If not specified it will use the working directory default for
AndroidTarget..

• android_executables_directory – This is the location of the executables directory to
be used for the android container. If not specified will default to a bin subdirectory in the
android_working_directory.

• package_data_directory – This is the location of the data stored for installed Android
packages on the device.

20 Chapter 2. Target

CHAPTER

THREE

MODULES

Modules add additional functionality to the core Target interface. Usually, it is support for specific subsystems on the
target. Modules are instantiated as attributes of the Target instance.

3.1 hotplug

Kernel hotplug subsystem allows offlining (“removing”) cores from the system, and onlining them back in. The
devlib module exposes a simple interface to this subsystem

from devlib import LocalLinuxTarget
target = LocalLinuxTarget()

offline cpus 2 and 3, "removing" them from the system
target.hotplug.offline(2, 3)

bring CPU 2 back in
target.hotplug.online(2)

Make sure all cpus are online
target.hotplug.online_all()

3.2 cpufreq

cpufreq is the kernel subsystem for managing DVFS (Dynamic Voltage and Frequency Scaling). It allows controlling
frequency ranges and switching policies (governors). The devlib module exposes the following interface

Note: On ARM big.LITTLE systems, all cores on a cluster (usually all cores of the same type) are in the same
frequency domain, so setting cpufreq state on one core on a cluster will affect all cores on that cluster. Because of
this, some devices only expose cpufreq sysfs interface (which is what is used by the devlib module) on the first cpu
in a cluster. So to keep your scripts portable, always use the fist (online) CPU in a cluster to set cpufreq state.

target.cpufreq.list_governors(cpu)
List cpufreq governors available for the specified cpu. Returns a list of strings.

Parameters cpu – The cpu; could be a numeric or the corresponding string (e.g. 1 or "cpu1").

target.cpufreq.list_governor_tunables(cpu)
List the tunables for the specified cpu’s current governor.

21

devlib Documentation, Release 1.0.0

Parameters cpu – The cpu; could be a numeric or the corresponding string (e.g. 1 or "cpu1").

target.cpufreq.get_governor(cpu)
Returns the name of the currently set governor for the specified cpu.

Parameters cpu – The cpu; could be a numeric or the corresponding string (e.g. 1 or "cpu1").

target.cpufreq.set_governor(cpu, governor, **kwargs)
Sets the governor for the specified cpu.

Parameters

• cpu – The cpu; could be a numeric or the corresponding string (e.g. 1 or "cpu1").

• governor – The name of the governor. This must be one of the governors supported by the
CPU (as returned by list_governors().

Keyword arguments may be used to specify governor tunable values.

target.cpufreq.get_governor_tunables(cpu)
Return a dict with the values of the specified CPU’s current governor.

Parameters cpu – The cpu; could be a numeric or the corresponding string (e.g. 1 or "cpu1").

target.cpufreq.set_governor_tunables(cpu, **kwargs)
Set the tunables for the current governor on the specified CPU.

Parameters cpu – The cpu; could be a numeric or the corresponding string (e.g. 1 or "cpu1").

Keyword arguments should be used to specify tunable values.

target.cpufreq.list_frequencies(cpu)
List DVFS frequencies supported by the specified CPU. Returns a list of ints.

Parameters cpu – The cpu; could be a numeric or the corresponding string (e.g. 1 or "cpu1").

target.cpufreq.get_min_frequency(cpu)
target.cpufreq.get_max_frequency(cpu)
target.cpufreq.set_min_frequency(cpu, frequency[, exact=True])
target.cpufreq.set_max_frequency(cpu, frequency[, exact=True])

Get the currently set, or set new min and max frequencies for the specified CPU. “set” functions are available
with all governors other than userspace.

Parameters cpu – The cpu; could be a numeric or the corresponding string (e.g. 1 or "cpu1").

target.cpufreq.get_min_available_frequency(cpu)
target.cpufreq.get_max_available_frequency(cpu)

Retrieve the min or max DVFS frequency that is supported (as opposed to currently enforced) for a
given CPU. Returns an int or None if could not be determined.

Parameters frequency – Frequency to set.

target.cpufreq.get_frequency(cpu)
target.cpufreq.set_frequency(cpu, frequency[, exact=True])

Get and set current frequency on the specified CPU. set_frequency is only available if the current governor is
userspace.

Parameters

• cpu – The cpu; could be a numeric or the corresponding string (e.g. 1 or "cpu1").

• frequency – Frequency to set.

22 Chapter 3. Modules

devlib Documentation, Release 1.0.0

3.3 cpuidle

cpuidle is the kernel subsystem for managing CPU low power (idle) states.

target.cpuidle.get_driver()
Return the name current cpuidle driver.

target.cpuidle.get_governor()
Return the name current cpuidle governor (policy).

target.cpuidle.get_states([cpu=0])
Return idle states (optionally, for the specified CPU). Returns a list of CpuidleState instances.

target.cpuidle.get_state(state[, cpu=0])
Return CpuidleState instance (optionally, for the specified CPU) representing the specified idle state. state
can be either an integer index of the state or a string with the states name or desc.

target.cpuidle.enable(state[, cpu=0])
target.cpuidle.disable(state[, cpu=0])
target.cpuidle.enable_all([cpu=0])
target.cpuidle.disable_all([cpu=0])

Enable or disable the specified or all states (optionally on the specified CPU.

You can also call enable() or disable() on CpuidleState objects returned by get_state(s).

3.4 cgroups

TODO

3.5 hwmon

TODO

3.6 API

3.6.1 Generic Module API Description

Modules implement discrete, optional pieces of functionality (“optional” in the sense that the functionality may or may
not be present on the target device, or that it may or may not be necessary for a particular application).

Every module (ultimately) derives from devlib.module.Module class. A module must define the following class
attributes:

name A unique name for the module. This cannot clash with any of the existing names and must be a
valid Python identifier, but is otherwise free-form.

kind This identifies the type of functionality a module implements, which in turn determines the interface
implemented by the module (all modules of the same kind must expose a consistent interface). This
must be a valid Python identifier, but is otherwise free-form, though, where possible, one should try
to stick to an already-defined kind/interface, lest we end up with a bunch of modules implementing
similar functionality but exposing slightly different interfaces.

3.3. cpuidle 23

devlib Documentation, Release 1.0.0

Note: It is possible to omit kind when defining a module, in which case the module’s name will be
treated as its kind as well.

stage This defines when the module will be installed into a Target. Currently, the following values are
allowed:

connected The module is installed after a connection to the target has been established.
This is the default.

early The module will be installed when a Target is first created. This should be used for
modules that do not rely on a live connection to the target.

setup The module will be installed after initial setup of the device has been performed.
This allows the module to utilize assets deployed during the setup stage for example
‘Busybox’.

Additionally, a module must implement a static (or class) method probe():

Module.probe(target)
This method takes a Target instance and returns True if this module is supported by that target, or False
otherwise.

Note: If the module stage is "early", this method cannot assume that a connection has been established (i.e.
it can only access attributes of the Target that do not rely on a connection).

Installation and invocation

The default installation method will create an instance of a module (the Target instance being the sole argument) and
assign it to the target instance attribute named after the module’s kind (or name if kind is None).

It is possible to change the installation procedure for a module by overriding the default install() method. The
method must have the following signature:

Module.install(cls, target, **kwargs)
Install the module into the target instance.

Implementation and Usage Patterns

There are two common ways to implement the above API, corresponding to the two common uses for modules:

• If a module provides an interface to a particular set of functionality (e.g. an OS subsystem), that module would
typically derive directly form Module and would leave kind unassigned, so that it is accessed by it name. Its
instance’s methods and attributes provide the interface for interacting with its functionality. For examples of this
type of module, see the subsystem modules listed above (e.g. cpufreq).

• If a module provides a platform- or infrastructure-specific implementation of a common function, the module
would derive from one of Module subclasses that define the interface for that function. In that case the module
would be accessible via the common kind defined its super. The module would typically implement __call__()
and be invoked directly. For examples of this type of module, see common function interface definitions below.

24 Chapter 3. Modules

devlib Documentation, Release 1.0.0

3.6.2 Common Function Interfaces

This section documents Module classes defining interface for common functions. Classes derived from them provide
concrete implementations for specific platforms.

HardResetModule

HardResetModule.kind
“hard_reset”

HardResetModule.__call__()
Must be implemented by derived classes.

Implements hard reset for a target devices. The equivalent of physically power cycling the device. This may be
used by client code in situations where the target becomes unresponsive and/or a regular reboot is not possible.

BootModule

BootModule.kind
“hard_reset”

BootModule.__call__()
Must be implemented by derived classes.

Implements a boot procedure. This takes the device from (hard or soft) reset to a booted state where the device
is ready to accept connections. For a lot of commercial devices the process is entirely automatic, however some
devices (e.g. development boards), my require additional steps, such as interactions with the bootloader, in order
to boot into the OS.

Bootmodule.update(**kwargs)
Update the boot settings. Some boot sequences allow specifying settings that will be utilized during boot (e.g.
linux kernel boot command line). The default implementation will set each setting in kwargs as an attribute of
the boot module (or update the existing attribute).

FlashModule

FlashModule.kind
“flash”

devlib.module.hwmon.__call__(image_bundle=None, images=None, boot_config=None, connect=True)
Must be implemented by derived classes.

Flash the target platform with the specified images.

Parameters

• image_bundle – A compressed bundle of image files with any associated metadata. The
format of the bundle is specific to a particular implementation.

• images – A dict mapping image names/identifiers to the path on the host file system of the
corresponding image file. If both this and image_bundle are specified, individual images
will override those in the bundle.

• boot_config – Some platforms require specifying boot arguments at the time of flashing
the images, rather than during each reboot. For other platforms, this will be ignored.

Connect Specifiy whether to try and connect to the target after flashing.

3.6. API 25

devlib Documentation, Release 1.0.0

3.6.3 Module Registration

Modules are specified on Target or Platform creation by name. In order to find the class associated with the
name, the module needs to be registered with devlib. This is accomplished by passing the module class into
register_module() method once it is defined.

Note: If you’re wiring a module to be included as part of devlib code base, you can place the file with the module
class under devlib/modules/ in the source and it will be automatically enumerated. There is no need to explicitly
register it in that case.

The code snippet below illustrates an implementation of a hard reset function for an “Acme” device.

import os
from devlib import HardResetModule, register_module

class AcmeHardReset(HardResetModule):

name = 'acme_hard_reset'

def __call__(self):
Assuming Acme board comes with a "reset-acme-board" utility
os.system('reset-acme-board {}'.format(self.target.name))

register_module(AcmeHardReset)

26 Chapter 3. Modules

CHAPTER

FOUR

INSTRUMENTATION

The Instrument API provide a consistent way of collecting measurements from a target. Measurements are collected
via an instance of a class derived from Instrument. An Instrument allows collection of measurement from one or
more channels. An Instrument may support INSTANTANEOUS or CONTINUOUS collection, or both.

4.1 Example

The following example shows how to use an instrument to read temperature from an Android target.

import and instantiate the Target and the instrument
(note: this assumes exactly one android target connected
to the host machine).
In [1]: from devlib import AndroidTarget, HwmonInstrument

In [2]: t = AndroidTarget()

In [3]: i = HwmonInstrument(t)

Set up the instrument on the Target. In case of HWMON, this is
a no-op, but is included here for completeness.
In [4]: i.setup()

Find out what the instrument is capable collecting from the
target.
In [5]: i.list_channels()
Out[5]:
[CHAN(battery/temp1, battery_temperature),
CHAN(exynos-therm/temp1, exynos-therm_temperature)]

Set up a new measurement session, and specify what is to be
collected.
In [6]: i.reset(sites=['exynos-therm'])

HWMON instrument supports INSTANTANEOUS collection, so invoking
take_measurement() will return a list of measurements take from
each of the channels configured during reset()
In [7]: i.take_measurement()
Out[7]: [exynos-therm_temperature: 36.0 degrees]

27

devlib Documentation, Release 1.0.0

4.2 API

4.2.1 Instrument

class devlib.instrument.Instrument(target, **kwargs)
An Instrument allows collection of measurement from one or more channels. An Instrument may support
INSTANTANEOUS or CONTINUOUS collection, or both.

Instrument.mode
A bit mask that indicates collection modes that are supported by this instrument. Possible values are:

INSTANTANEOUS The instrument supports taking a single sample via take_measurement().

CONTINUOUS The instrument supports collecting measurements over a period of time via
start(), stop(), get_data(), and (optionally) get_raw methods.

Note: It’s possible for one instrument to support more than a single mode.

Instrument.active_channels
Channels that have been activated via reset(). Measurements will only be collected for these channels.

Instrument.list_channels()
Returns a list of InstrumentChannel instances that describe what this instrument can measure on the current
target. A channel is a combination of a kind of measurement (power, temperature, etc) and a site that indicates
where on the target the measurement will be collected from.

Instrument.get_channels(measure)
Returns channels for a particular measure type. A measure can be either a string (e.g. "power") or a
MeasurmentType instance.

Instrument.setup(*args, **kwargs)
This will set up the instrument on the target. Parameters this method takes are particular to subclasses (see
documentation for specific instruments below). What actions are performed by this method are also instrument-
specific. Usually these will be things like installing executables, starting services, deploying assets, etc. Typically,
this method needs to be invoked at most once per reboot of the target (unless teardown() has been called), but
see documentation for the instrument you’re interested in.

Instrument.reset(sites=None, kinds=None, channels=None)
This is used to configure an instrument for collection. This must be invoked before start() is called to begin
collection. This methods sets the active_channels attribute of the Instrument.

If channels is provided, it is a list of names of channels to enable and sites and kinds must both be None.

Otherwise, if one of sites or kinds is provided, all channels matching the given sites or kinds are enabled. If
both are provided then all channels of the given kinds at the given sites are enabled.

If none of sites, kinds or channels are provided then all available channels are enabled.

Instrument.take_measurement()
Take a single measurement from active_channels. Returns a list of Measurement objects (one for each active
channel).

Note: This method is only implemented by Instruments that support INSTANTANEOUS measurement.

Instrument.start()
Starts collecting measurements from active_channels.

28 Chapter 4. Instrumentation

devlib Documentation, Release 1.0.0

Note: This method is only implemented by Instruments that support CONTINUOUS measurement.

Instrument.stop()
Stops collecting measurements from active_channels. Must be called after start().

Note: This method is only implemented by Instruments that support CONTINUOUS measurement.

Instrument.get_data(outfile)
Write collected data into outfile. Must be called after stop(). Data will be written in CSV format with
a column for each channel and a row for each sample. Column heading will be channel, labels in the form
<site>_<kind> (see InstrumentChannel). The order of the columns will be the same as the order of channels
in Instrument.active_channels.

If reporting timestamps, one channel must have a site named "timestamp" and a kind of a MeasurmentType
of an appropriate time unit which will be used, if appropriate, during any post processing.

Note: Currently supported time units are seconds, milliseconds and microseconds, other units can also be used
if an appropriate conversion is provided.

This returns a MeasurementCsv instance associated with the outfile that can be used to stream Measurements
lists (similar to what is returned by take_measurement().

Note: This method is only implemented by Instruments that support CONTINUOUS measurement.

Instrument.get_raw()

Returns a list of paths to files containing raw output from the underlying source(s) that is used to
produce the data CSV. If no raw output is generated or saved, an empty list will be returned. The
format of the contents of the raw files is entirely source-dependent.

Note: This method is not guaranteed to return valid filepaths after the teardown()method has been invoked as
the raw files may have been deleted. Please ensure that copies are created manually prior to calling teardown()
if the files are to be retained.

Instrument.teardown()
Performs any required clean up of the instrument. This usually includes removing temporary and raw files (if
keep_raw is set to False on relevant instruments), stopping services etc.

Instrument.sample_rate_hz
Sample rate of the instrument in Hz. Assumed to be the same for all channels.

Note: This attribute is only provided by Instruments that support CONTINUOUS measurement.

4.2. API 29

devlib Documentation, Release 1.0.0

4.2.2 Instrument Channel

class devlib.instrument.InstrumentChannel(name, site, measurement_type, **attrs)
An InstrumentChannel describes a single type of measurement that may be collected by an Instrument. A
channel is primarily defined by a site and a measurement_type.

A site indicates where on the target a measurement is collected from (e.g. a voltage rail or location of a sensor).

A measurement_type is an instance of MeasurmentType that describes what sort of measurement this is
(power, temperature, etc). Each measurement type has a standard unit it is reported in, regardless of an instrument
used to collect it.

A channel (i.e. site/measurement_type combination) is unique per instrument, however there may be more than
one channel associated with one site (e.g. for both voltage and power).

It should not be assumed that any site/measurement_type combination is valid. The list of available channels can
queried with Instrument.list_channels().

InstrumentChannel.site
The name of the “site” from which the measurements are collected (e.g. voltage rail, sensor, etc).

InstrumentChannel.kind
A string indicating the type of measurement that will be collected. This is the name of the MeasurmentType
associated with this channel.

InstrumentChannel.units
Units in which measurement will be reported. this is determined by the underlying MeasurmentType.

InstrumentChannel.label
A label that can be attached to measurements associated with with channel. This is constructed with

'{}_{}'.format(self.site, self.kind)

4.2.3 Measurement Types

In order to make instruments easer to use, and to make it easier to swap them out when necessary (e.g. change method
of collecting power), a number of standard measurement types are defined. This way, for example, power will always
be reported as “power” in Watts, and never as “pwr” in milliWatts. Currently defined measurement types are

name units category
count count
percent percent
time_us microseconds time
time_ms milliseconds time
temperature degrees thermal
power watts power/energy
voltage volts power/energy
current amps power/energy
energy joules power/energy
tx bytes data transfer
rx bytes data transfer
tx/rx bytes data transfer

30 Chapter 4. Instrumentation

devlib Documentation, Release 1.0.0

4.3 Available Instruments

This section lists instruments that are currently part of devlib.

Todo: Add other instruments

4.3.1 Baylibre ACME BeagleBone Black Cape

From the official project page:

[The Baylibre Another Cute Measurement Equipment (ACME)] is an extension for the BeagleBone Black
(the ACME Cape), designed to provide multi-channel power and temperature measurements capabilities
to the BeagleBone Black (BBB). It comes with power and temperature probes integrating a power switch
(the ACME Probes), turning it into an advanced all-in-one power/temperature measurement solution.

The ACME initiative is completely open source, from HW to SW drivers and applications.

The Infrastructure

Retrieving measurement from the ACME through devlib requires:

• a BBB running the image built for using the ACME (micro SD card required);

• an ACME cape on top of the BBB;

• at least one ACME probe1 connected to the ACME cape;

• a BBB-host interface (typically USB or Ethernet)2;

• a host (the one running devlib) with libiio (the Linux IIO interface) installed, and a Python environment able to
find the libiio Python wrapper i.e. able to import iio as communications between the BBB and the host rely
on the Linux Industrial I/O Subsystem (IIO).

The ACME probes are built on top of the Texas Instruments INA226 and the data acquisition chain is as follows:

BeagleBone BlackINA226

Inputs

drivers IIO Daemon IIO InterfaceEth./USBADC Processing Registers I2C

Bus Voltage

Shunt Voltage

For reference, the software stack on the host is roughly given by:

Backend Python

IIO Daemon C API iio Wrapper devlib UserIIO Interface Eth./USB

Ethernet was the only IIO Interface used and tested during the development of this instrument. However, USB seems
to be supported. The IIO library also provides “Local” and “XML” connections but these are to be used when the IIO

1 There exist different variants of the ACME probe (USB, Jack, shunt resistor) but they all use the same probing hardware (the TI INA226) and
don’t differ from the point of view of the software stack (at any level, including devlib, the highest one)

2 Be careful that in cases where multiple ACME boards are being used, it may be required to manually handle name conflicts

4.3. Available Instruments 31

http://baylibre.com/acme/
https://gitlab.com/baylibre-acme/ACME-Software-Release/blob/master/README.md
https://github.com/analogdevicesinc/libiio
https://wiki.analog.com/software/linux/docs/iio/iio
http://www.ti.com/lit/ds/symlink/ina226.pdf
https://gitlab.com/baylibre-acme/ACME/issues/2
https://gitlab.com/baylibre-acme/ACME/issues/2

devlib Documentation, Release 1.0.0

devices are directly connected to the host i.e. in our case, if we were to run Python and devlib on the BBB. These are
also untested.

Measuring Power

In IIO terminology, the ACME cape is an IIO context and ACME probes are IIO devices with IIO channels. An input
IIO channel (the ACME has no output IIO channel) is a stream of samples and an ACME cape can be connected to up
to 8 probes i.e. have 8 IIO devices. The probes are discovered at startup by the IIO drivers on the BBB and are indexed
according to the order in which they are connected to the ACME cape (with respect to the “Probe X” connectors on the
cape).

Fig. 1: ACME Cape on top of a BBB: Notice the numbered probe connectors (source)

Please note that the numbers on the PCB do not represent the index of a probe in IIO; on top of being 1-based (as
opposed to IIO device indexing being 0-based), skipped connectors do not result in skipped indices e.g. if three probes
are connected to the cape at Probe 1, Probe 3 and Probe 7, IIO (and therefore the entire software stack, including
devlib) will still refer to them as devices 0, 1 and 2, respectively. Furthermore, probe “hot swapping” does not seem to
be supported.

INA226: The probing spearhead

An ACME probe has 5 IIO channels, 4 of which being “IIO wrappers” around what the INA226 outputs (through its
I2C registers): the bus voltage, the shunt voltage, the shunt current and the load power. The last channel gives the
timestamps and is probably added further down the pipeline. A typical circuit configuration for the INA226 (useful
when shunt-based ACME probes are used as their PCB does not contain the full circuit unlike the USB and jack variants)
is given by its datasheet:

The analog-to-digital converter (ADC)

The digital time-discrete sampled signal of the analog time-continuous input voltage signal is obtained through an
analog-to-digital converter (ADC). To measure the “instantaneous input voltage”, the ADC “charges up or down” a
capacitor before measuring its charge.

The integration time is the time spend by the ADC acquiring the input signal in its capacitor. The longer this time is,
the more resilient the sampling process is to unwanted noise. The drawback is that, if the integration time is increased
then the sampling rate decreases. This effect can be somewhat compared to a low-pass filter.

As the INA226 alternatively connects its ADC to the bus voltage and shunt voltage (see previous figure), samples are

32 Chapter 4. Instrumentation

https://baylibre.com/wp-content/uploads/2015/11/20150916_BayLibre_ACME_RevB-010-1030x599.png

devlib Documentation, Release 1.0.0

Fig. 2: Typical Circuit Configuration (source: Texas Instruments INA226)

retrieved at a frequency of

1

𝑇𝑏𝑢𝑠 + 𝑇𝑠ℎ𝑢𝑛𝑡

where 𝑇𝑋 is the integration time for the 𝑋 voltage.

As described below (BaylibreAcmeInstrument.reset), the integration times for the bus and shunt voltage can be
set separately which allows a tradeoff of accuracy between signals. This is particularly useful as the shunt voltage
returned by the INA226 has a higher resolution than the bus voltage (2.5 V and 1.25 mV LSB, respectively) and
therefore would benefit more from a longer integration time.

As an illustration, consider the following sampled sine wave and notice how increasing the integration time (of the bus
voltage in this case) “smoothes” out the signal:

Internal signal processing

The INA226 is able to accumulate samples acquired by its ADC and output to the ACME board (technically, to its I2C
registers) the average value of 𝑁 samples. This is called oversampling. While the integration time somewhat behaves
as an analog low-pass filter, the oversampling feature is a digital low-pass filter by definition. The former should be set
to reduce sampling noise (i.e. noise on a single sample coming from the sampling process) while the latter should be
used to filter out high-frequency noise present in the input signal and control the sampling frequency.

Therefore, samples are available at the output of the INA226 at a frequency

1

𝑁(𝑇𝑏𝑢𝑠 + 𝑇𝑠ℎ𝑢𝑛𝑡)

and oversampling ratio provides a way to control the output sampling frequency (i.e. to limit the required output
bandwidth) while making sure the signal fidelity is as desired.

The 4 IIO channels coming from the INA226 can be grouped according to their respective origins: the bus and shunt
voltages are measured (and, potentially filtered) while the shunt current and load power are computed. Indeed, the
INA226 contains on-board fixed-point arithmetic units to compute the trivial expressions:

𝐼𝑠ℎ𝑢𝑛𝑡 =
𝑉𝑠ℎ𝑢𝑛𝑡

𝑅𝑠ℎ𝑢𝑛𝑡
, 𝑃𝑙𝑜𝑎𝑑 = 𝑉𝑙𝑜𝑎𝑑 𝐼𝑙𝑜𝑎𝑑 ≈ 𝑉𝑏𝑢𝑠 𝐼𝑠ℎ𝑢𝑛𝑡

4.3. Available Instruments 33

http://www.ti.com/lit/ds/symlink/ina226.pdf

devlib Documentation, Release 1.0.0

Fig. 3: Increasing the integration time increases the resilience to noise

34 Chapter 4. Instrumentation

devlib Documentation, Release 1.0.0

Fig. 4: Acquisition and Processing: Functional Block Diagram (source: Texas Instruments INA226)

A functional block diagram of this is also given by the datasheet:

In the end, there are therefore 3 channels (bus voltage, shunt voltage and timestamps) that are necessary to figure out
the load power consumption, while the others are being provided for convenience e.g. in case the rest of the hardware
does not have the computing power to make the computation.

Sampling Frequency Issues

It looks like the INA226-ACME-BBB setup has a bottleneck preventing the sampling frequency to go higher than ~1.4
kHz (the maximal theoretical sampling frequency is ~3.6 kHz). We know that this issue is not internal to the ADC
itself (inside of the INA226) because modifying the integration time affects the output signal even when the sampling
frequency is capped (as shown above) but it may come from anywhere after that.

Because of this, there is no point in using a (theoretical) sampling frequency that is larger than 1.4 kHz. But
it is important to note that the ACME will still report the theoretical sampling rate (probably computed with
the formula given above) through BaylibreAcmeInstrument.sample_rate_hz and IIOINA226Instrument.
sample_rate_hz even if it differs from the actual sampling rate.

Note that, even though this is obvious for the theoretical sampling rate, the specific values of the bus and shunt integra-
tion times do not seem to have an influence on the measured sampling rate; only their sum matters. This further points
toward a data-processing bottleneck rather than a hardware bug in the acquisition device.

The following chart compares the evolution of the measured sampling rate with the expected one as we modify it
through 𝑇𝑠ℎ𝑢𝑛𝑡, 𝑇𝑏𝑢𝑠 and 𝑁 :

Furthermore, because the transactions are done through a buffer (see next section), if the sampling frequency is too low,
the connection may time-out before the buffer is full and ready to be sent. This may be fixed in an upcoming release.

4.3. Available Instruments 35

http://www.ti.com/lit/ds/symlink/ina226.pdf

devlib Documentation, Release 1.0.0

Fig. 5: Theoretical vs measured sampling rates

Buffer-based transactions

Samples made available by the INA226 are retrieved by the BBB and stored in a buffer which is sent back to the host
once it is full (see buffer_samples_count in BaylibreAcmeInstrument.setup for setting its size). Therefore,
the larger the buffer is, the longer it takes to be transmitted back but the less often it has to be transmitted. To illustrate
this, consider the following graphs showing the time difference between successive samples in a retrieved signal when
the size of the buffer changes:

devlib API

ACME Cape + BBB (IIO Context)

devlib provides wrapper classes for all the IIO connections to an IIO context given by libiio (the Linux IIO interface)
however only the network-based one has been tested. For the other classes, please refer to the official IIO documentation
for the meaning of their constructor parameters.

class devlib.instrument.baylibre_acme.BaylibreAcmeInstrument(target=None, iio_context=None,
use_base_iio_context=False,
probe_names=None)

Base class wrapper for the ACME instrument which itself is a wrapper for the IIO context base class. This class
wraps around the passed iio_context; if use_base_iio_context is True, iio_context is first passed to
the iio.Context base class (see its documentation for how this parameter is then used), else iio_context is
expected to be a valid instance of iio.Context.

probe_names is expected to be a string or list of strings; if passed, the probes in the instance are named
according to it in the order in which they are discovered (see previous comment about probe discovery and
BaylibreAcmeInstrument.probes). There should be as many probe_names as there are probes connected
to the ACME. By default, the probes keep their IIO names.

To ensure that the setup is reliable, devlib requires minimal versions for iio, the IIO drivers and the ACME
BBB SD image.

36 Chapter 4. Instrumentation

https://github.com/analogdevicesinc/libiio

devlib Documentation, Release 1.0.0

Fig. 6: Impact of the buffer size on the sampling regularity

4.3. Available Instruments 37

devlib Documentation, Release 1.0.0

class devlib.instrument.baylibre_acme.BaylibreAcmeNetworkInstrument(target=None,
hostname=None,
probe_names=None)

Child class of BaylibreAcmeInstrument for Ethernet-based IIO communication. The hostname should be
the IP address or network name of the BBB. If it is None, the IIOD_REMOTE environment variable will be used
as the hostname. If that environment variable is empty, the server will be discovered using ZeroConf. If that
environment variable is not set, a local context is created.

class devlib.instrument.baylibre_acme.BaylibreAcmeXMLInstrument(target=None, xmlfile=None,
probe_names=None)

Child class of BaylibreAcmeInstrument using the XML backend of the IIO library and building an IIO context
from the provided xmlfile (a string giving the path to the file is expected).

class devlib.instrument.baylibre_acme.BaylibreAcmeLocalInstrument(target=None,
probe_names=None)

Child class of BaylibreAcmeInstrument using the Local IIO backend.

BaylibreAcmeInstrument.mode
The collection mode for the ACME is CONTINUOUS.

BaylibreAcmeInstrument.setup(shunt_resistor, integration_time_bus, integration_time_shunt,
oversampling_ratio, buffer_samples_count=None, buffer_is_circular=False,
absolute_timestamps=False, high_resolution=True)

The shunt_resistor (𝑅𝑠ℎ𝑢𝑛𝑡 [𝜇Ω]), integration_time_bus (𝑇𝑏𝑢𝑠 [s]), integration_time_shunt
(𝑇𝑠ℎ𝑢𝑛𝑡 [s]) and oversampling_ratio (𝑁) are copied into on-board registers inside of the INA226 to
be used as described above. Please note that there exists a limited set of accepted values for these
parameters; for the integration times, refer to IIOINA226Instrument.INTEGRATION_TIMES_AVAILABLE
and for the oversampling_ratio, refer to IIOINA226Instrument.OVERSAMPLING_RATIOS_AVAILABLE.
If all probes share the same value for these attributes, this class provides BaylibreAcmeInstrument.
OVERSAMPLING_RATIOS_AVAILABLE and BaylibreAcmeInstrument.INTEGRATION_TIMES_AVAILABLE.

The buffer_samples_count is the size of the IIO buffer expressed in samples; this is independent of the
number of active channels! By default, if buffer_samples_count is not passed, the IIO buffer of size
IIOINA226Instrument.sample_rate_hz is created meaning that a buffer transfer happens roughly every
second.

If absolute_timestamps is False, the first sample from the timestamps channel is substracted from all the
following samples of this channel, effectively making its signal start at 0.

high_resolution is used to enable a mode where power and current are computed offline on the host machine
running devlib: even if the user asks for power or current channels, they are not enabled in hardware (INA226)
and instead the necessary voltage signal(s) are enabled to allow the computation of the desired signals using the
FPU of the host (which is very likely to be much more accurate than the fixed-point 16-bit unit of the INA226).

A circular buffer can be used by setting buffer_is_circular to True (directly passed to iio.Buffer).

Each one of the arguments of this method can either be a single value which will be used for all probes or a list of
values giving the corresponding setting for each probe (in the order of probe_names passed to the constructor)
with the exception of absolute_timestamps (as all signals are resampled onto a common time signal) which,
if passed as an array, will be True only if all of its elements are True.

BaylibreAcmeInstrument.reset(sites=None, kinds=None, channels=None)
BaylibreAcmeInstrument.setup() should always be called before calling this method so that the hardware
is correctly configured. Once this method has been called, BaylibreAcmeInstrument.setup() can only be
called again once BaylibreAcmeInstrument.teardown() has been called.

This method inherits from Instrument.reset(); call list_channels() for a list of available channels from
a given instance.

38 Chapter 4. Instrumentation

devlib Documentation, Release 1.0.0

Please note that the size of the transaction buffer is proportional to the number of active channels (for a fixed
buffer_samples_count). Therefore, limiting the number of active channels allows to limit the required band-
width. high_resolution in BaylibreAcmeInstrument.setup() limits the number of active channels to the
minimum required.

BaylibreAcmeInstrument.start()
BaylibreAcmeInstrument.reset() should always be called before calling this method so that the right chan-
nels are active, BaylibreAcmeInstrument.stop() should always be called after calling this method and no
other method of the object should be called in-between.

This method starts the sampling process of the active channels. The samples are stored but are not available until
BaylibreAcmeInstrument.stop() has been called.

BaylibreAcmeInstrument.stop()
BaylibreAcmeInstrument.start() should always be called before calling this method so that samples are
being captured.

This method stops the sampling process of the active channels and retrieves and pre-processes the samples.
Once this function has been called, the samples are made available through BaylibreAcmeInstrument.
get_data(). Note that it is safe to call BaylibreAcmeInstrument.start() after this method returns but
this will discard the data previously acquired.

When this method returns, It is guaranteed that the content of at least one IIO buffer will have been captured.

If different sampling frequencies were used for the different probes, the signals are resampled to share the time
signal with the highest sampling frequency.

BaylibreAcmeInstrument.teardown()
This method can be called at any point (unless otherwise specified e.g. BaylibreAcmeInstrument.start())
to deactive any active probe once BaylibreAcmeInstrument.reset() has been called. This method does not
affect already captured samples.

The following graph gives a summary of the allowed calling sequence(s) where each edge means “can be called directly
after”:

__init__ setup

reset

start

teardown

stop

BaylibreAcmeInstrument.get_data(outfile=None)
Inherited from Instrument.get_data(). If outfile is None (default), the samples are returned as
a pandas.DataFrame with the channels as columns. Else, it behaves like the parent class, returning a
MeasurementCsv.

BaylibreAcmeInstrument.add_channel()
Should not be used as new channels are discovered through the IIO context.

4.3. Available Instruments 39

devlib Documentation, Release 1.0.0

BaylibreAcmeInstrument.list_channels()
Inherited from Instrument.list_channels().

BaylibreAcmeInstrument.sample_rate_hz

BaylibreAcmeInstrument.OVERSAMPLING_RATIOS_AVAILABLE

BaylibreAcmeInstrument.INTEGRATION_TIMES_AVAILABLE
These attributes return the corresponding attributes of the probes if they all share the same value (and are therefore
provided to avoid reading from a single probe and expecting the others to share this value). They should be used
whenever the assumption that all probes share the same value for the accessed attribute is made. For this reason,
an exception is raised if it is not the case.

If probes are active (i.e. BaylibreAcmeInstrument.reset() has been called), only these are read for the
value of the attribute (as others have been tagged to be ignored). If not, all probes are used.

BaylibreAcmeInstrument.probes
Dictionary of IIOINA226Instrument instances representing the probes connected to the ACME. If provided
to the constructor, the keys are the probe_names that were passed.

ACME Probes (IIO Devices)

The following class is not supposed to be instantiated by the user code: the API is provided as the ACME probes can
be accessed through the BaylibreAcmeInstrument.probes attribute.

class devlib.instrument.baylibre_acme.IIOINA226Instrument(iio_device)
This class is a wrapper for the iio.Device class and takes a valid instance as iio_device. It is not supposed
to be instantiated by the user and its partial documentation is provided for read-access only.

IIOINA226Instrument.shunt_resistor

IIOINA226Instrument.sample_rate_hz

IIOINA226Instrument.oversampling_ratio

IIOINA226Instrument.integration_time_shunt

IIOINA226Instrument.integration_time_bus

IIOINA226Instrument.OVERSAMPLING_RATIOS_AVAILABLE

IIOINA226Instrument.INTEGRATION_TIMES_AVAILABLE
These attributes are provided for reference and should not be assigned to but can be used to make the user
code more readable, if needed. Please note that, as reading these attributes reads the underlying value from the
hardware, they should not be read when the ACME is active i.e when BaylibreAcmeInstrument.setup()
has been called without calling BaylibreAcmeInstrument.teardown().

Examples

The following example shows a basic use of an ACME at IP address ACME_IP_ADDRwith 2 probes connected, capturing
all the channels during (roughly) 10 seconds at a sampling rate of 613 Hz and outputing the measurements to the CSV
file acme.csv:

import time
import devlib

acme = devlib.BaylibreAcmeNetworkInstrument(hostname=ACME_IP_ADDR,
probe_names=['battery', 'usb'])

(continues on next page)

40 Chapter 4. Instrumentation

devlib Documentation, Release 1.0.0

(continued from previous page)

int_times = acme.INTEGRATION_TIMES_AVAILABLE
ratios = acme.OVERSAMPLING_RATIOS_AVAILABLE

acme.setup(shunt_resistor=20000,
integration_time_bus=int_times[1],
integration_time_shunt=int_times[1],
oversampling_ratio=ratios[1])

acme.reset()
acme.start()
time.sleep(10)
acme.stop()
acme.get_data('acme.csv')
acme.teardown()

It is common to have different resistances for different probe shunt resistors. Furthermore, we may want to have different
sampling frequencies for different probes (e.g. if it is known that the USB voltage changes rather slowly). Finally, it is
possible to set the integration times for the bus and shunt voltages of a same probe to different values. The following
call to BaylibreAcmeInstrument.setup() illustrates these:

acme.setup(shunt_resistor=[20000, 10000],
integration_time_bus=[int_times[2], int_times[3]],
integration_time_shunt=[int_times[3], int_times[4]],
oversampling_ratio=[ratios[0], ratios[1]])

for n, p in acme.probes.iteritems():
print('{}:'.format(n))
print(' T_bus = {} s'.format(p.integration_time_bus))
print(' T_shn = {} s'.format(p.integration_time_shunt))
print(' N = {}'.format(p.oversampling_ratio))
print(' freq = {} Hz'.format(p.sample_rate_hz))

Output:
#
battery:
T_bus = 0.000332 s
T_shn = 0.000588 s
N = 1
freq = 1087 Hz
usb:
T_bus = 0.000588 s
T_shn = 0.0011 s
N = 4
freq = 148 Hz

Please keep in mind that calling acme.get_data('acme.csv') after capturing samples with this setup will output
signals with the same sampling frequency (the highest one among the sampling frequencies) as the signals are resampled
to output a single time signal.

4.3. Available Instruments 41

devlib Documentation, Release 1.0.0

42 Chapter 4. Instrumentation

CHAPTER

FIVE

COLLECTORS

The CollectorAPI provide a consistent way of collecting arbitrary data from a target. Data is collected via an instance
of a class derived from CollectorBase.

5.1 Example

The following example shows how to use a collector to read the logcat output from an Android target.

import and instantiate the Target and the collector
(note: this assumes exactly one android target connected
to the host machine).
In [1]: from devlib import AndroidTarget, LogcatCollector

In [2]: t = AndroidTarget()

Set up the collector on the Target.

In [3]: collector = LogcatCollector(t)

Configure the output file path for the collector to use.
In [4]: collector.set_output('adb_log.txt')

Reset the Collector to preform any required configuration or preparation.
In [5]: collector.reset()

Start Collecting
In [6]: collector.start()

Wait for some output to be generated
In [7]: sleep(10)

Stop Collecting
In [8]: collector.stop()

Retrieved the collected data
In [9]: output = collector.get_data()

Display the returned ``CollectorOutput`` Object.
In [10]: output
Out[10]: [<adb_log.txt (file)>]

(continues on next page)

43

devlib Documentation, Release 1.0.0

(continued from previous page)

In [11] log_file = output[0]

Get the path kind of the the returned CollectorOutputEntry.
In [12]: log_file.path_kind
Out[12]: 'file'

Get the path of the returned CollectorOutputEntry.
In [13]: log_file.path
Out[13]: 'adb_log.txt'

Find the full path to the log file.
In [14]: os.path.join(os.getcwd(), logfile)
Out[14]: '/tmp/adb_log.txt'

5.2 API

5.2.1 CollectorBase

class devlib.collector.CollectorBase(target, **kwargs)
A CollectorBase is the the base class and API that should be implemented to allowing collecting various data
from a traget e.g. traces, logs etc.

Collector.setup(*args, **kwargs)
This will set up the collector on the target. Parameters this method takes are particular to subclasses (see docu-
mentation for specific collectors below). What actions are performed by this method are also collector-specific.
Usually these will be things like installing executables, starting services, deploying assets, etc. Typically, this
method needs to be invoked at most once per reboot of the target (unless teardown() has been called), but see
documentation for the collector you’re interested in.

CollectorBase.reset()
This can be used to configure a collector for collection. This must be invoked before start() is called to begin
collection.

CollectorBase.start()
Starts collecting from the target.

CollectorBase.stop()
Stops collecting from target. Must be called after start().

CollectorBase.set_output(output_path)
Configure the output path for the particular collector. This will be either a directory or file path which will be
used when storing the data. Please see the individual Collector documentation for more information.

CollectorBase.get_data()
The collected data will be return via the previously specified output_path. This method will return a
CollectorOutput object which is a subclassed list object containing individual CollectorOutputEntry ob-
jects with details about the individual output entry.

44 Chapter 5. Collectors

devlib Documentation, Release 1.0.0

5.2.2 CollectorOutputEntry

This object is designed to allow for the output of a collector to be processed generically. The object will behave as a
regular string containing the path to underlying output path and can be used directly in os.path operations.

CollectorOutputEntry.path
The file path for the corresponding output item.

CollectorOutputEntry.path_kind
The type of output the is specified in the path attribute. Current valid kinds are: file and directory.

CollectorOutputEntry.__init__(path, path_kind)
Initialises a CollectorOutputEntry object with the desired file path and kind of file path specified.

5.3 Available Collectors

This section lists collectors that are currently part of devlib.

Todo: Add collectors

5.3. Available Collectors 45

devlib Documentation, Release 1.0.0

46 Chapter 5. Collectors

CHAPTER

SIX

DERIVED MEASUREMENTS

The DerivedMeasurements API provides a consistent way of performing post processing on a provided
MeasurementCsv file.

6.1 Example

The following example shows how to use an implementation of a DerivedMeasurement to obtain a list of calculated
DerivedMetric’s.

Import the relevant derived measurement module
in this example the derived energy module is used.
In [1]: from devlib import DerivedEnergyMeasurements

Obtain a MeasurementCsv file from an instrument or create from
existing .csv file. In this example an existing csv file is used which was
created with a sampling rate of 100Hz
In [2]: from devlib import MeasurementsCsv
In [3]: measurement_csv = MeasurementsCsv('/example/measurements.csv', sample_rate_
→˓hz=100)

Process the file and obtain a list of the derived measurements
In [4]: derived_measurements = DerivedEnergyMeasurements.process(measurement_csv)

In [5]: derived_measurements
Out[5]: [device_energy: 239.1854075 joules, device_power: 5.5494089227 watts]

6.2 API

6.2.1 Derived Measurements

class devlib.derived.DerivedMeasurements
The DerivedMeasurements class provides an API for post-processing instrument output offline (i.e. without a
connection to the target device) to generate additional metrics.

DerivedMeasurements.process(measurement_csv)
Process a MeasurementsCsv, returning a list of DerivedMetric and/or MeasurementsCsv objects that have
been derived from the input. The exact nature and ordering of the list members is specific to individual
‘class’DerivedMeasurements implementations.

47

devlib Documentation, Release 1.0.0

DerivedMeasurements.process_raw(*args)
Process raw output from an instrument, returning a list DerivedMetric and/or MeasurementsCsv objects that
have been derived from the input. The exact nature and ordering of the list members is specific to individual
‘class’DerivedMeasurements implementations.

The arguments to this method should be paths to raw output files generated by an instrument. The number and
order of expected arguments is specific to particular implementations.

6.2.2 Derived Metric

class devlib.derived.DerivedMetric
Represents a metric derived from previously collected Measurement``s. Unlike, a ``Measurement, this
was not measured directly from the target.

DerivedMetric.name
The name of the derived metric. This uniquely defines a metric – two DerivedMetric objects with the same
name represent to instances of the same metric (e.g. computed from two different inputs).

DerivedMetric.value
The numeric value of the metric that has been computed for a particular input.

DerivedMetric.measurement_type
The MeasurementType of the metric. This indicates which conceptual category the metric falls into, its units,
and conversions to other measurement types.

DerivedMetric.units
The units in which the metric’s value is expressed.

6.3 Available Derived Measurements

Note: If a method of the API is not documented for a particular implementation, that means that it s not overridden
by that implementation. It is still safe to call it – an empty list will be returned.

6.3.1 Energy

class devlib.derived.energy.DerivedEnergyMeasurements
The DerivedEnergyMeasurements class is used to calculate average power and cumulative energy for each
site if the required data is present.

The calculation of cumulative energy can occur in 3 ways. If a site contains energy results, the first and last
measurements are extracted and the delta calculated. If not, a timestamp channel will be used to calculate the
energy from the power channel, failing back to using the sample rate attribute of the MeasurementCsv file if
timestamps are not available. If neither timestamps or a sample rate are available then an error will be raised.

DerivedEnergyMeasurements.process(measurement_csv)
This will return total cumulative energy for each energy channel, and the average power for each power channel
in the input CSV. The output will contain all energy metrics followed by power metrics. The ordering of both will
match the ordering of channels in the input. The metrics will by named based on the sites of the corresponding
channels according to the following patters: "<site>_total_energy" and "<site>_average_power".

48 Chapter 6. Derived Measurements

devlib Documentation, Release 1.0.0

6.3.2 FPS / Rendering

class devlib.derived.fps.DerivedGfxInfoStats(drop_threshold=5, suffix='-fps', filename=None,
outdir=None)

Produces FPS (frames-per-second) and other derived statistics from GfxInfoFramesInstrument output. This
takes several optional parameters in creation:

Parameters

• drop_threshold – FPS in an application, such as a game, which this processor is primarily
targeted at, cannot reasonably drop to a very low value. This is specified to this threshold.
If an FPS for a frame is computed to be lower than this threshold, it will be dropped on
the assumption that frame rendering was suspended by the system (e.g. when idling), or
there was some sort of error, and therefore this should be used in performance calculations.
defaults to 5.

• suffix – The name of the generated per-frame FPS csv file will be derived from the input
frames csv file by appending this suffix. This cannot be specified at the same time as a
filename.

• filename – As an alternative to the suffix, a complete file name for FPS csv can be specified.
This cannot be used at the same time as the suffix.

• outdir – By default, the FPS csv file will be placed in the same directory as the input frames
csv file. This can be changed by specifying an alternate directory here

Warning: Specifying both filename and oudir will mean that exactly the same file will be used for
FPS output on each invocation of process() (even for different inputs) resulting in previous results being
overwritten.

DerivedGfxInfoStats.process(measurement_csv)
Process the fames csv generated by GfxInfoFramesInstrument and returns a list containing exactly three
entries: DerivedMetrics fps and total_frames, followed by a MeasurentCsv containing per-frame FPSs
values.

DerivedGfxInfoStats.process_raw(gfxinfo_frame_raw_file)
As input, this takes a single argument, which should be the path to the raw output file of
GfxInfoFramesInstrument. The returns stats accumulated by gfxinfo. At the time of writing, the
stats (in order) are: janks, janks_pc (percentage of all frames), render_time_50th_ptile (50th per-
centile, or median, for time to render a frame), render_time_90th_ptile, render_time_95th_ptile,
render_time_99th_ptile, missed_vsync, hight_input_latency, slow_ui_thread,
slow_bitmap_uploads, slow_issue_draw_commands. Please see the gfxinfo documentation for de-
tails.

class devlib.derived.fps.DerivedSurfaceFlingerStats(drop_threshold=5, suffix='-fps', filename=None,
outdir=None)

Produces FPS (frames-per-second) and other derived statistics from SurfaceFlingerFramesInstrument out-
put. This takes several optional parameters in creation:

Parameters

• drop_threshold – FPS in an application, such as a game, which this processor is primarily
targeted at, cannot reasonably drop to a very low value. This is specified to this threshold.
If an FPS for a frame is computed to be lower than this threshold, it will be dropped on
the assumption that frame rendering was suspended by the system (e.g. when idling), or
there was some sort of error, and therefore this should be used in performance calculations.
defaults to 5.

6.3. Available Derived Measurements 49

https://developer.android.com/training/testing/performance.html

devlib Documentation, Release 1.0.0

• suffix – The name of the generated per-frame FPS csv file will be derived from the input
frames csv file by appending this suffix. This cannot be specified at the same time as a
filename.

• filename – As an alternative to the suffix, a complete file name for FPS csv can be specified.
This cannot be used at the same time as the suffix.

• outdir – By default, the FPS csv file will be placed in the same directory as the input frames
csv file. This can be changed by specifying an alternate directory here

Warning: Specifying both filename and oudir will mean that exactly the same file will be used for
FPS output on each invocation of process() (even for different inputs) resulting in previous results being
overwritten.

DerivedSurfaceFlingerStats.process(measurement_csv)
Process the fames csv generated by SurfaceFlingerFramesInstrument and returns a list containing exactly
three entries: DerivedMetrics fps and total_frames, followed by a MeasurentCsv containing per-frame
FPSs values, followed by janks janks_pc, and missed_vsync metrics.

50 Chapter 6. Derived Measurements

CHAPTER

SEVEN

PLATFORM

Platforms describe the system underlying the OS. They encapsulate hardware- and firmware-specific details. In most
cases, the generic Platform class, which gets used if a platform is not explicitly specified on Target creation, will
be sufficient. It will automatically query as much platform information (such CPU topology, hardware model, etc) if it
was not specified explicitly by the user.

class devlib.platform.Platform(name=None, core_names=None, core_clusters=None, big_core=None,
model=None, modules=None)

Parameters

• name – A user-friendly identifier for the platform.

• core_names – A list of CPU core names in the order they appear registered with the OS. If
they are not specified, they will be queried at run time.

• core_clusters – A list with cluster ids of each core (starting with 0). If this is not specified,
clusters will be inferred from core names (cores with the same name are assumed to be in a
cluster).

• big_core – The name of the big core in a big.LITTLE system. If this is not specified it will
be inferred (on systems with exactly two clusters).

• model – Model name of the hardware system. If this is not specified it will be queried at run
time.

• modules – Modules with additional functionality supported by the platform (e.g. for han-
dling flashing, rebooting, etc). These would be added to the Target’s modules. (See Mod-
ules).

7.1 Versatile Express

The generic platform may be extended to support hardware- or infrastructure-specific functionality. Platforms exist for
ARM VersatileExpress-based Juno and TC2 development boards. In addition to the standard Platform parameters
above, these platforms support additional configuration:

class devlib.platform.arm.VersatileExpressPlatform
Normally, this would be instantiated via one of its derived classes (Juno or TC2) that set appropriate defaults for
some of the parameters.

Parameters

• serial_port – Identifies the serial port (usual a /dev node) on which the device is con-
nected.

51

devlib Documentation, Release 1.0.0

• baudrate – Baud rate for the serial connection. This defaults to 115200 for Juno and 38400
for TC2.

• vemsd_mount – Mount point for the VEMSD (Versatile Express MicroSD card that is used
for board configuration files and firmware images). This defaults to "/media/JUNO" for
Juno and "/media/VEMSD" for TC2, though you would most likely need to change this for
your setup as it would depend both on the file system label on the MicroSD card, and on how
the card was mounted on the host system.

• hard_reset_method – Specifies the method for hard-resetting the devices (e.g. if it be-
comes unresponsive and normal reboot method doesn’t not work). Currently supported
methods are:

dtr reboot by toggling DTR line on the serial connection (this is enabled via a DIP
switch on the board).

reboottxt reboot by writing a filed called reboot.txt to the root of the VEMSD
mount (this is enabled via board configuration file).

This defaults to dtr for Juno and reboottxt for TC2.

• bootloader – Specifies the bootloader configuration used by the board. The following
values are currently supported:

uefi Boot via UEFI menu, by selecting the entry specified by uefi_entry param-
eter. If this entry does not exist, it will be automatically created based on values
provided for image, initrd, fdt, and bootargs parameters.

uefi-shell Boot by going via the UEFI shell.

u-boot Boot using Das U-Boot.

bootmon Boot directly via Versatile Express Bootmon using the values provided
for image, initrd, fdt, and bootargs parameters.

This defaults to u-boot for Juno and bootmon for TC2.

• flash_method – Specifies how the device is flashed. Currently, only "vemsd" method
is supported, which flashes by writing firmware images to an appropriate location on the
VEMSD.

• image – Specfies the kernel image name for uefi or bootmon boot.

• fdt – Specifies the device tree blob for uefi or bootmon boot.

• initrd – Specifies the ramdisk image for uefi or bootmon boot.

• bootargs – Specifies the boot arguments that will be pass to the kernel by the bootloader.

• uefi_entry – Then name of the UEFI entry to be used/created by uefi bootloader.

• ready_timeout – Timeout, in seconds, for the time it takes the platform to become ready
to accept connections. Note: this does not mean that the system is fully booted; just that the
services needed to establish a connection (e.g. sshd or adbd) are up.

52 Chapter 7. Platform

devlib Documentation, Release 1.0.0

7.2 Gem5 Simulation Platform

By initialising a Gem5SimulationPlatform, devlib will start a gem5 simulation (based upon the arguments the user
provided) and then connect to it using Gem5Connection. Using the methods discussed above, some methods of the
Target will be altered slightly to better suit gem5.

class devlib.platform.gem5.Gem5SimulationPlatform(name, host_output_dir, gem5_bin, gem5_args,
gem5_virtio, gem5_telnet_port=None)

During initialisation the gem5 simulation will be kicked off (based upon the arguments provided by the user) and
the telnet port used by the gem5 simulation will be intercepted and stored for use by the Gem5Connection.

Parameters

• name – Platform name

• host_output_dir – Path on the host where the gem5 outputs will be placed (e.g. stats
file)

• gem5_bin – gem5 binary

• gem5_args – Arguments to be passed onto gem5 such as config file etc.

• gem5_virtio – Arguments to be passed onto gem5 in terms of the virtIO device used to
transfer files between the host and the gem5 simulated system.

• gem5_telnet_port – Not yet in use as it would be used in future implementations of
devlib in which the user could use the platform to pick up an existing and running simu-
lation.

Gem5SimulationPlatform.init_target_connection([target])
Based upon the OS defined in the Target, the type of Gem5Connection will be set (AndroidGem5Connection
or AndroidGem5Connection).

Gem5SimulationPlatform.update_from_target([target])
This method provides specific setup procedures for a gem5 simulation. First of all, the m5 binary will be installed
on the guest (if it is not present). Secondly, three methods in the Target will be monkey-patched:

• reboot: this is not supported in gem5

• reset: this is not supported in gem5

• capture_screen: gem5 might already have screencaps so the monkey-patched method will first try to
transfer the existing screencaps. In case that does not work, it will fall back to the original Target imple-
mentation of capture_screen().

Finally, it will call the parent implementation of update_from_target().

Gem5SimulationPlatform.setup([target])
The m5 binary be installed, if not yet installed on the gem5 simulated system. It will also resize the gem5 shell,
to avoid line wrapping issues.

7.2. Gem5 Simulation Platform 53

devlib Documentation, Release 1.0.0

54 Chapter 7. Platform

CHAPTER

EIGHT

CONNECTION

A Connection abstracts an actual physical connection to a device. The first connection is created when Target.
connect() method is called. If a Target is used in a multi-threaded environment, it will maintain a connection for
each thread in which it is invoked. This allows the same target object to be used in parallel in multiple threads.

Connections will be automatically created and managed by Targets, so there is usually no reason to create one man-
ually. Instead, configuration for a Connection is passed as connection_settings parameter when creating a Target.
The connection to be used target is also specified on instantiation by conn_cls parameter, though all concrete Target
implementations will set an appropriate default, so there is typically no need to specify this explicitly.

Connection classes are not a part of an inheritance hierarchy, i.e. they do not derive from a common base. Instead, a
Connection is any class that implements the following methods.

push(self, sources, dest, timeout=None)
Transfer a list of files from the host machine to the connected device.

Parameters

• sources – list of paths on the host

• dest – path to the file or folder on the connected device.

• timeout – timeout (in seconds) for the transfer of each file; if the transfer does not com-
plete within this period, an exception will be raised.

pull(self, sources, dest, timeout=None)
Transfer a list of files from the connected device to the host machine.

Parameters

• sources – list of paths on the connected device.

• dest – path to the file or folder on the host

• timeout – timeout (in seconds) for the transfer for each file; if the transfer does not com-
plete within this period, an exception will be raised.

execute(self, command, timeout=None, check_exit_code=False, as_root=False, strip_colors=True,
will_succeed=False)

Execute the specified command on the connected device and return its output.

Parameters

• command – The command to be executed.

• timeout – Timeout (in seconds) for the execution of the command. If specified, an ex-
ception will be raised if execution does not complete with the specified period.

• check_exit_code – If True the exit code (on connected device) from execution of the
command will be checked, and an exception will be raised if it is not 0.

55

devlib Documentation, Release 1.0.0

• as_root – The command will be executed as root. This will fail on unrooted connected
devices.

• strip_colours – The command output will have colour encodings and most ANSI es-
cape sequences striped out before returning.

• will_succeed – The command is assumed to always succeed, unless there is an issue in
the environment like the loss of network connectivity. That will make the method always
raise an instance of a subclass of DevlibTransientError when the command fails,
instead of a DevlibStableError.

background(self, command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, as_root=False)
Execute the command on the connected device, invoking it via subprocess on the host. This will return
subprocess.Popen instance for the command.

Parameters

• command – The command to be executed.

• stdout – By default, standard output will be piped from the subprocess; this may be used
to redirect it to an alternative file handle.

• stderr – By default, standard error will be piped from the subprocess; this may be used
to redirect it to an alternative file handle.

• as_root – The command will be executed as root. This will fail on unrooted connected
devices.

Note: This will block the connection until the command completes.

Note: The above methods are directly wrapped by Target methods, however note that some of the defaults are
different.

cancel_running_command(self)
Cancel a running command (previously started with background()) and free up the connection. It is valid to
call this if the command has already terminated (or if no command was issued), in which case this is a no-op.

close(self)
Close the connection to the device. The Connection object should not be used after this method is called. There
is no way to reopen a previously closed connection, a new connection object should be created instead.

Note: There is no open() method, as the connection is assumed to be opened on instantiation.

8.1 Connection Types

class devlib.utils.android.AdbConnection(device=None, timeout=None, adb_server=None,
adb_as_root=False, connection_attempts=MAX_ATTEMPTS,
poll_transfers=False, start_transfer_poll_delay=30,
total_transfer_timeout=3600, transfer_poll_period=30)

A connection to an android device via adb (Android Debug Bridge). adb is part of the Android SDK (though
stand-alone versions are also available).

Parameters

56 Chapter 8. Connection

devlib Documentation, Release 1.0.0

• device – The name of the adb device. This is usually a unique hex string for USB-
connected devices, or an ip address/port combination. To see connected devices, you can
run adb devices on the host.

• timeout – Connection timeout in seconds. If a connection to the device is not established
within this period, HostError is raised.

• adb_server – Allows specifying the address of the adb server to use.

• adb_as_root – Specify whether the adb server should be restarted in root mode.

• connection_attempts – Specify how many connection attempts, 10 seconds apart,
should be attempted to connect to the device. Defaults to 5.

• poll_transfers – Specify whether file transfers should be polled. Polling monitors the
progress of file transfers and periodically checks whether they have stalled, attempting to
cancel the transfers prematurely if so.

• start_transfer_poll_delay – If transfers are polled, specify the length of time after
a transfer has started before polling should start.

• total_transfer_timeout – If transfers are polled, specify the total amount of time to
elapse before the transfer is cancelled, regardless of its activity.

• transfer_poll_period – If transfers are polled, specify the period at which the trans-
fers are sampled for activity. Too small values may cause the destination size to appear
the same over one or more sample periods, causing improper transfer cancellation.

class devlib.utils.ssh.SshConnection(host, username, password=None, keyfile=None, port=22,
timeout=None, platform=None, sudo_cmd='sudo -- sh -c {}',
strict_host_check=True, use_scp=False, poll_transfers=False,
start_transfer_poll_delay=30, total_transfer_timeout=3600,
transfer_poll_period=30)

A connection to a device on the network over SSH.

Parameters

• host – SSH host to which to connect

• username – username for SSH login

• password – password for the SSH connection

Note: To connect to a system without a password this parameter should be set to an
empty string otherwise ssh key authentication will be attempted.

Note: In order to user password-based authentication, sshpass utility must be installed
on the system.

• keyfile – Path to the SSH private key to be used for the connection.

Note: keyfile and password can’t be specified at the same time.

• port – TCP port on which SSH server is listening on the remote device. Omit to use the
default port.

8.1. Connection Types 57

devlib Documentation, Release 1.0.0

• timeout – Timeout for the connection in seconds. If a connection cannot be established
within this time, an error will be raised.

• platform – Specify the platform to be used. The generic Platform class is used by
default.

• sudo_cmd – Specify the format of the command used to grant sudo access.

• strict_host_check – Specify the ssh connection parameter
StrictHostKeyChecking,

• use_scp – Use SCP for file transfers, defaults to SFTP.

• poll_transfers – Specify whether file transfers should be polled. Polling monitors the
progress of file transfers and periodically checks whether they have stalled, attempting to
cancel the transfers prematurely if so.

• start_transfer_poll_delay – If transfers are polled, specify the length of time after
a transfer has started before polling should start.

• total_transfer_timeout – If transfers are polled, specify the total amount of time to
elapse before the transfer is cancelled, regardless of its activity.

• transfer_poll_period – If transfers are polled, specify the period at which the trans-
fers are sampled for activity. Too small values may cause the destination size to appear
the same over one or more sample periods, causing improper transfer cancellation.

class devlib.utils.ssh.TelnetConnection(host, username, password=None, port=None, timeout=None,
password_prompt=None, original_prompt=None)

A connection to a device on the network over Telenet.

Note: Since Telenet protocol is does not support file transfer, scp is used for that purpose.

Parameters

• host – SSH host to which to connect

• username – username for SSH login

• password – password for the SSH connection

Note: In order to user password-based authentication, sshpass utility must be installed
on the system.

• port – TCP port on which SSH server is listening on the remote device. Omit to use the
default port.

• timeout – Timeout for the connection in seconds. If a connection cannot be established
within this time, an error will be raised.

• password_prompt – A string with the password prompt used by sshpass. Set this if
your version of sshpass uses something other than "[sudo] password".

• original_prompt – A regex for the shell prompted presented in the Telenet connection
(the prompt will be reset to a randomly-generated pattern for the duration of the connection
to reduce the possibility of clashes). This parameter is ignored for SSH connections.

class devlib.host.LocalConnection(keep_password=True, unrooted=False, password=None)
A connection to the local host allowing it to be treated as a Target.

58 Chapter 8. Connection

devlib Documentation, Release 1.0.0

Parameters

• keep_password – If this is True (the default) user’s password will be cached in memory
after it is first requested.

• unrooted – If set to True, the platform will be assumed to be unrooted without testing
for root. This is useful to avoid blocking on password request in scripts.

• password – Specify password on connection creation rather than prompting for it.

class devlib.utils.ssh.Gem5Connection(platform, host=None, username=None, password=None,
timeout=None, password_prompt=None, original_prompt=None)

A connection to a gem5 simulation using a local Telnet connection.

Note: Some of the following input parameters are optional and will be ignored during initialisation.
They were kept to keep the analogy with a TelnetConnection (i.e. host, username, password, port,
password_prompt and original_promp)

Parameters

• host – Host on which the gem5 simulation is running

Note: Even though the input parameter for the hostwill be ignored, the gem5 simulation
needs to be on the same host the user is currently on, so if the host given as input param-
eter is not the same as the actual host, a TargetStableError will be raised to prevent
confusion.

• username – Username in the simulated system

• password – No password required in gem5 so does not need to be set

• port – Telnet port to connect to gem5. This does not need to be set at initialisation as
this will either be determined by the Gem5SimulationPlatform or can be set using the
connect_gem5() method

• timeout – Timeout for the connection in seconds. Gem5 has high latencies so unless
the timeout given by the user via this input parameter is higher than the default one (3600
seconds), this input parameter will be ignored.

• password_prompt – A string with password prompt

• original_prompt – A regex for the shell prompt

There are two classes that inherit from Gem5Connection: AndroidGem5Connection and LinuxGem5Connection.
They inherit almost all methods from the parent class, without altering them. The only methods discussed below are
those that will be overwritten by the LinuxGem5Connection and AndroidGem5Connection respectively.

class devlib.utils.ssh.LinuxGem5Connection
A connection to a gem5 simulation that emulates a Linux system.

_login_to_device(self)
Login to the gem5 simulated system.

class devlib.utils.ssh.AndroidGem5Connection
A connection to a gem5 simulation that emulates an Android system.

_wait_for_boot(self)
Wait for the gem5 simulated system to have booted and finished the booting animation.

8.1. Connection Types 59

devlib Documentation, Release 1.0.0

60 Chapter 8. Connection

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

61

devlib Documentation, Release 1.0.0

62 Chapter 9. Indices and tables

PYTHON MODULE INDEX

d
devlib, 1
devlib.collector, 44
devlib.derived, 47
devlib.derived.energy, 48
devlib.derived.fps, 49
devlib.exception, 6
devlib.host, 58
devlib.instrument, 28
devlib.instrument.baylibre_acme, 36
devlib.module, 20
devlib.module.cgroups, 23
devlib.module.cpufreq, 21
devlib.module.cupidle, 22
devlib.module.hwmon, 23
devlib.platform, 50
devlib.platform.arm, 51
devlib.platform.gem5, 53
devlib.target, 8
devlib.utils.android, 56
devlib.utils.ssh, 57

63

devlib Documentation, Release 1.0.0

64 Python Module Index

INDEX

Symbols
__call__() (devlib.module.hwmon.BootModule

method), 25
__call__() (devlib.module.hwmon.HardResetModule

method), 25
__call__() (in module devlib.module.hwmon), 25
__init__() (devlib.collector.CollectorOutputEntry

method), 45
_login_to_device() (de-

vlib.utils.ssh.LinuxGem5Connection method),
59

_wait_for_boot() (de-
vlib.utils.ssh.AndroidGem5Connection
method), 59

A
active_channels (devlib.instrument.Instrument at-

tribute), 28
AdbConnection (class in devlib.utils.android), 56
add_channel() (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument

method), 39
AndroidGem5Connection (class in devlib.utils.ssh), 59
AndroidTarget (class in devlib.target), 18

B
background(), 56
background() (devlib.target.Target method), 13
background_invoke() (devlib.target.Target method),

13
batch_revertable_write_value() (de-

vlib.target.Target method), 14
BaylibreAcmeInstrument (class in de-

vlib.instrument.baylibre_acme), 36
BaylibreAcmeLocalInstrument (class in de-

vlib.instrument.baylibre_acme), 38
BaylibreAcmeNetworkInstrument (class in de-

vlib.instrument.baylibre_acme), 36
BaylibreAcmeXMLInstrument (class in de-

vlib.instrument.baylibre_acme), 38
big_core (devlib.target.Target attribute), 10

C
cancel_running_command(), 56
capture_screen() (devlib.target.Target method), 16
check_responsive() (devlib.target.Target method), 15
ChromeOsTarget (class in devlib.target), 20
close(), 56
CollectorBase (class in devlib.collector), 44
config (devlib.target.Target attribute), 11
conn (devlib.target.Target attribute), 11
connect() (devlib.target.Target method), 11
connected_as_root (devlib.target.Target attribute), 10
core_clusters (devlib.target.Target attribute), 10
core_cpus() (devlib.target.Target method), 16
core_names (devlib.target.Target attribute), 10
cpuinfo (devlib.target.Target attribute), 10

D
DerivedEnergyMeasurements (class in de-

vlib.derived.energy), 48
DerivedGfxInfoStats (class in devlib.derived.fps), 49
DerivedMeasurements (class in devlib.derived), 47
DerivedMetric (class in devlib.derived), 48
DerivedSurfaceFlingerStats (class in de-

vlib.derived.fps), 49
devlib

module, 1
devlib.collector

module, 44
devlib.derived

module, 47
devlib.derived.energy

module, 48
devlib.derived.fps

module, 49
devlib.exception

module, 6
devlib.host

module, 58
devlib.instrument

module, 28
devlib.instrument.baylibre_acme

module, 36

65

devlib Documentation, Release 1.0.0

devlib.module
module, 20

devlib.module.cgroups
module, 23

devlib.module.cpufreq
module, 21

devlib.module.cupidle
module, 22

devlib.module.hwmon
module, 23

devlib.platform
module, 50

devlib.platform.arm
module, 51

devlib.platform.gem5
module, 53

devlib.target
module, 8

devlib.utils.android
module, 56

devlib.utils.ssh
module, 57

disable() (devlib.module.cupidle.target.cpuidle
method), 23

disable_all() (devlib.module.cupidle.target.cpuidle
method), 23

disconnect() (devlib.target.Target method), 11

E
enable() (devlib.module.cupidle.target.cpuidle method),

23
enable_all() (devlib.module.cupidle.target.cpuidle

method), 23
ensure_screen_is_off() (de-

vlib.target.AndroidTarget method), 19
ensure_screen_is_on() (devlib.target.AndroidTarget

method), 19
ensure_screen_is_on_and_stays() (de-

vlib.target.AndroidTarget method), 19
execute(), 55
execute() (devlib.target.Target method), 12
extract() (devlib.target.Target method), 17

F
file_exists() (devlib.target.Target method), 16

G
Gem5Connection (class in devlib.utils.ssh), 59
Gem5SimulationPlatform (class in de-

vlib.platform.gem5), 53
get_airplane_mode() (devlib.target.AndroidTarget

method), 18
get_auto_brightness() (devlib.target.AndroidTarget

method), 19

get_auto_rotation() (devlib.target.AndroidTarget
method), 18

get_brightness() (devlib.target.AndroidTarget
method), 19

get_channels() (devlib.instrument.Instrument
method), 28

get_connection() (devlib.target.Target method), 11
get_data() (devlib.collector.CollectorBase method), 44
get_data() (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument

method), 39
get_data() (devlib.instrument.Instrument method), 29
get_driver() (devlib.module.cupidle.target.cpuidle

method), 23
get_frequency() (de-

vlib.module.cpufreq.target.cpufreq method),
22

get_governor() (devlib.module.cpufreq.target.cpufreq
method), 22

get_governor() (devlib.module.cupidle.target.cpuidle
method), 23

get_governor_tunables() (de-
vlib.module.cpufreq.target.cpufreq method),
22

get_installed() (devlib.target.Target method), 17
get_max_available_frequency() (de-

vlib.module.cpufreq.target.cpufreq method),
22

get_max_frequency() (de-
vlib.module.cpufreq.target.cpufreq method),
22

get_min_available_frequency() (de-
vlib.module.cpufreq.target.cpufreq method),
22

get_min_frequency() (de-
vlib.module.cpufreq.target.cpufreq method),
22

get_pids_of() (devlib.target.Target method), 15
get_raw() (devlib.instrument.Instrument method), 29
get_rotation() (devlib.target.AndroidTarget method),

18
get_state() (devlib.module.cupidle.target.cpuidle

method), 23
get_states() (devlib.module.cupidle.target.cpuidle

method), 23
get_stay_on_mode() (devlib.target.AndroidTarget

method), 19
get_workpath() (devlib.target.Target method), 16
getenv() (devlib.target.Target method), 16

H
homescreen() (devlib.target.AndroidTarget method), 19
hostid (devlib.target.Target attribute), 10
hostname (devlib.target.Target attribute), 10

66 Index

devlib Documentation, Release 1.0.0

I
IIOINA226Instrument (class in de-

vlib.instrument.baylibre_acme), 40
init_target_connection() (de-

vlib.platform.gem5.Gem5SimulationPlatform
method), 53

install() (devlib.module.hwmon.Module method), 24
install() (devlib.target.Target method), 16
install_if_needed() (devlib.target.Target method),

16
install_module() (devlib.target.Target method), 17
Instrument (class in devlib.instrument), 28
InstrumentChannel (class in devlib.instrument), 30
integration_time_bus (de-

vlib.instrument.baylibre_acme.IIOINA226Instrument
attribute), 40

integration_time_shunt (de-
vlib.instrument.baylibre_acme.IIOINA226Instrument
attribute), 40

INTEGRATION_TIMES_AVAILABLE (de-
vlib.instrument.baylibre_acme.BaylibreAcmeInstrument
attribute), 40

INTEGRATION_TIMES_AVAILABLE (de-
vlib.instrument.baylibre_acme.IIOINA226Instrument
attribute), 40

invoke() (devlib.target.Target method), 13
is_connected (devlib.target.Target attribute), 10
is_installed() (devlib.target.Target method), 17
is_network_connected() (devlib.target.Target

method), 17
is_rooted (devlib.target.Target attribute), 10
is_screen_on() (devlib.target.AndroidTarget method),

19

K
kernel_version (devlib.target.Target attribute), 10
kick_off() (devlib.target.Target method), 14
kill() (devlib.target.Target method), 15
killall() (devlib.target.Target method), 15
kind (devlib.instrument.InstrumentChannel attribute), 30
kind (devlib.module.hwmon.BootModule attribute), 25
kind (devlib.module.hwmon.FlashModule attribute), 25
kind (devlib.module.hwmon.HardResetModule at-

tribute), 25

L
label (devlib.instrument.InstrumentChannel attribute),

30
LinuxGem5Connection (class in devlib.utils.ssh), 59
LinuxTarget (class in devlib.target), 17
list_channels() (de-

vlib.instrument.baylibre_acme.BaylibreAcmeInstrument
method), 39

list_channels() (devlib.instrument.Instrument
method), 28

list_directory() (devlib.target.Target method), 16
list_file_systems() (devlib.target.Target method),

16
list_frequencies() (de-

vlib.module.cpufreq.target.cpufreq method),
22

list_governor_tunables() (de-
vlib.module.cpufreq.target.cpufreq method),
21

list_governors() (de-
vlib.module.cpufreq.target.cpufreq method),
21

list_offline_cpus() (devlib.target.Target method),
16

list_online_cpus() (devlib.target.Target method), 16
little_core (devlib.target.Target attribute), 10
LocalConnection (class in devlib.host), 58
LocalLinuxTarget (class in devlib.target), 18

M
makedirs() (devlib.target.Target method), 16
measurement_type (devlib.derived.DerivedMetric at-

tribute), 48
mode (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument

attribute), 38
mode (devlib.instrument.Instrument attribute), 28
model (devlib.target.Target attribute), 10
module

devlib, 1
devlib.collector, 44
devlib.derived, 47
devlib.derived.energy, 48
devlib.derived.fps, 49
devlib.exception, 6
devlib.host, 58
devlib.instrument, 28
devlib.instrument.baylibre_acme, 36
devlib.module, 20
devlib.module.cgroups, 23
devlib.module.cpufreq, 21
devlib.module.cupidle, 22
devlib.module.hwmon, 23
devlib.platform, 50
devlib.platform.arm, 51
devlib.platform.gem5, 53
devlib.target, 8
devlib.utils.android, 56
devlib.utils.ssh, 57

N
name (devlib.derived.DerivedMetric attribute), 48
number_of_cpus (devlib.target.Target attribute), 11

Index 67

devlib Documentation, Release 1.0.0

O
os_version (devlib.target.Target attribute), 10
oversampling_ratio (de-

vlib.instrument.baylibre_acme.IIOINA226Instrument
attribute), 40

OVERSAMPLING_RATIOS_AVAILABLE (de-
vlib.instrument.baylibre_acme.BaylibreAcmeInstrument
attribute), 40

OVERSAMPLING_RATIOS_AVAILABLE (de-
vlib.instrument.baylibre_acme.IIOINA226Instrument
attribute), 40

P
path (devlib.collector.CollectorOutputEntry attribute),

45
path_kind (devlib.collector.CollectorOutputEntry

attribute), 45
Platform (class in devlib.platform), 51
probe() (devlib.module.hwmon.Module method), 24
probes (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument

attribute), 40
process() (devlib.derived.DerivedMeasurements

method), 47
process() (devlib.derived.energy.DerivedEnergyMeasurements

method), 48
process() (devlib.derived.fps.DerivedGfxInfoStats

method), 49
process() (devlib.derived.fps.DerivedSurfaceFlingerStats

method), 50
process_raw() (devlib.derived.DerivedMeasurements

method), 47
process_raw() (devlib.derived.fps.DerivedGfxInfoStats

method), 49
ps() (devlib.target.Target method), 15
pull(), 55
pull() (devlib.target.Target method), 12
push(), 55
push() (devlib.target.Target method), 12

R
read_bool() (devlib.target.Target method), 14
read_int() (devlib.target.Target method), 14
read_tree_values() (devlib.target.Target method), 15
read_tree_values_flat() (devlib.target.Target

method), 15
read_value() (devlib.target.Target method), 14
reboot() (devlib.target.Target method), 11
reboot_bootloader() (devlib.target.AndroidTarget

method), 19
remove() (devlib.target.Target method), 16
reset() (devlib.collector.CollectorBase method), 44
reset() (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument

method), 38

reset() (devlib.instrument.Instrument method), 28
reset() (devlib.target.Target method), 15
revertable_write_value() (devlib.target.Target

method), 14

S
sample_rate_hz (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument

attribute), 40
sample_rate_hz (devlib.instrument.baylibre_acme.IIOINA226Instrument

attribute), 40
sample_rate_hz (devlib.instrument.Instrument at-

tribute), 29
set_airplane_mode() (devlib.target.AndroidTarget

method), 18
set_auto_brightness() (devlib.target.AndroidTarget

method), 19
set_auto_rotation() (devlib.target.AndroidTarget

method), 18
set_brightness() (devlib.target.AndroidTarget

method), 18
set_frequency() (de-

vlib.module.cpufreq.target.cpufreq method),
22

set_governor() (devlib.module.cpufreq.target.cpufreq
method), 22

set_governor_tunables() (de-
vlib.module.cpufreq.target.cpufreq method),
22

set_inverted_rotation() (de-
vlib.target.AndroidTarget method), 18

set_left_rotation() (devlib.target.AndroidTarget
method), 18

set_max_frequency() (de-
vlib.module.cpufreq.target.cpufreq method),
22

set_min_frequency() (de-
vlib.module.cpufreq.target.cpufreq method),
22

set_natural_rotation() (de-
vlib.target.AndroidTarget method), 18

set_output() (devlib.collector.CollectorBase method),
44

set_right_rotation() (devlib.target.AndroidTarget
method), 18

set_rotation() (devlib.target.AndroidTarget method),
18

set_stay_on_mode() (devlib.target.AndroidTarget
method), 19

set_stay_on_never() (devlib.target.AndroidTarget
method), 19

set_stay_on_while_powered() (de-
vlib.target.AndroidTarget method), 19

setup() (devlib.collector.Collector method), 44

68 Index

devlib Documentation, Release 1.0.0

setup() (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument
method), 38

setup() (devlib.instrument.Instrument method), 28
setup() (devlib.platform.gem5.Gem5SimulationPlatform

method), 53
setup() (devlib.target.Target method), 11
shunt_resistor (devlib.instrument.baylibre_acme.IIOINA226Instrument

attribute), 40
site (devlib.instrument.InstrumentChannel attribute), 30
SshConnection (class in devlib.utils.ssh), 57
start() (devlib.collector.CollectorBase method), 44
start() (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument

method), 39
start() (devlib.instrument.Instrument method), 28
stop() (devlib.collector.CollectorBase method), 44
stop() (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument

method), 39
stop() (devlib.instrument.Instrument method), 29
swipe_to_unlock() (devlib.target.AndroidTarget

method), 19
system_id (devlib.target.Target attribute), 10

T
take_measurement() (devlib.instrument.Instrument

method), 28
Target (class in devlib.target), 9
teardown() (devlib.instrument.baylibre_acme.BaylibreAcmeInstrument

method), 39
teardown() (devlib.instrument.Instrument method), 29
TelnetConnection (class in devlib.utils.ssh), 58
tempfile() (devlib.target.Target method), 16

U
uninstall() (devlib.target.Target method), 16
units (devlib.derived.DerivedMetric attribute), 48
units (devlib.instrument.InstrumentChannel attribute),

30
update() (devlib.module.hwmon.Bootmodule method),

25
update_from_target() (de-

vlib.platform.gem5.Gem5SimulationPlatform
method), 53

user (devlib.target.Target attribute), 11

V
value (devlib.derived.DerivedMetric attribute), 48
VersatileExpressPlatform (class in de-

vlib.platform.arm), 51

W
wait_for_device() (devlib.target.AndroidTarget

method), 19
which() (devlib.target.Target method), 17
write_value() (devlib.target.Target method), 14

Index 69

	Overview
	Acquiring a Target
	Target Interface
	One-time Setup
	Command Execution
	File Transfer
	Process Control
	More…

	Super User Privileges
	On-Target Locations
	Exceptions Handling
	Extending devlib

	Modules
	Instruments and Collectors

	Target
	Linux Target
	Local Linux Target
	Android Target
	ChromeOS Target

	Modules
	hotplug
	cpufreq
	cpuidle
	cgroups
	hwmon
	API
	Generic Module API Description
	Installation and invocation
	Implementation and Usage Patterns

	Common Function Interfaces
	HardResetModule
	BootModule
	FlashModule

	Module Registration

	Instrumentation
	Example
	API
	Instrument
	Instrument Channel
	Measurement Types

	Available Instruments
	Baylibre ACME BeagleBone Black Cape
	The Infrastructure
	Measuring Power
	INA226: The probing spearhead
	The analog-to-digital converter (ADC)
	Internal signal processing

	Sampling Frequency Issues
	Buffer-based transactions

	devlib API
	ACME Cape + BBB (IIO Context)
	ACME Probes (IIO Devices)
	Examples

	Collectors
	Example
	API
	CollectorBase
	CollectorOutputEntry

	Available Collectors

	Derived Measurements
	Example
	API
	Derived Measurements
	Derived Metric

	Available Derived Measurements
	Energy
	FPS / Rendering

	Platform
	Versatile Express
	Gem5 Simulation Platform

	Connection
	Connection Types

	Indices and tables
	Python Module Index
	Index

